首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A number of soil isolates belonging to the genus Trichoderma were found to produce isonitrins A, B, C and D and isonitrinic acids E and F, a new class of antibiotics characterized by the presence of isonitrile groups. Taxonomy of the producing organisms, fermentation, isolation and physicochemical and biological properties of isonitrins and isonitrinic acids are reported. Isonitrin A showed the highest in vitro antimicrobial activities against gram-positive and negative bacteria and fungi.  相似文献   

2.
We previously discovered N-substituted formamide deformylase (NfdA) in Arthrobacter pascens F164, which degrades N-substituted formamide (Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H., and Kobayashi, M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13726–13731). In this study, we found an enzyme involved in the first step of isonitrile metabolism, isonitrile hydratase, that hydrates isonitrile to the corresponding N-substituted formamide. First, we investigated the optimum culture conditions for the production of isonitrile hydratase. The highest enzyme activity was obtained when A. pascens F164 was cultured in a nutrient medium containing N-benzylformamide. This Arthrobacter isonitrile hydratase was purified, characterized, and compared with Pseudomonas putida N19-2 isonitrile hydratase (InhA), which is the sole one reported at present. Arthrobacter isonitrile hydratase was found to have a molecular mass of about 530 kDa and to consist of 12 identical subunits. The apparent Km value for cyclohexyl isocyanide was 0.95 ± 0.05 mm. A. pascens F164 grew and exhibited the isonitrile hydratase and N-substituted formamide deformylase activities when cultured in a medium containing an isonitrile as the sole carbon and nitrogen sources. However, both enzyme activities were not observed on culture in a medium containing glycerol and (NH4)2SO4 as the sole carbon and nitrogen sources, respectively. These findings suggested that the Arthrobacter enzyme is an inducible enzyme, possibly involved in assimilation and/or detoxification of isonitrile. Moreover, gene cloning of the Arthrobacter enzyme revealed no sequence similarity between this enzyme and InhA. Comparison of their properties and features demonstrated that the two enzymes are biochemically, immunologically, and structurally different from each other. Thus, we discovered a new isonitrile hydratase named InhB.  相似文献   

3.
Summary This paper describes the effect of different nutrients on the production of the macrolide polyene antibiotics, PA-5 and PA-7, produced by Streptoverticillium sp 43/16. Optimal production yields of PA-5 and PA-7 have been achieved with l-proline and glycine as nitrogen sources, respectively. Elsewhere, the presence of manganese as a metallic ion stimulated the antibiotic production significantly. The requirements of phosphate for optimal yields of both antibiotics (50 mM) are much higher than those described for strains of Streptomyces, which produce other macrolide polyene antibiotics. Magnesium is essential for this production. The specific production of PA-5 and PA-7 increases with concentrations of glucose up to 40 mM, but is inhibited at higher concentrations. It was found that the presence of ammonium salts and the amino acids l-cysteine and/or l-valine as nitrogen sources has negative effects on the production of both antibiotics.  相似文献   

4.
Summary Genetically well-characterized strains of antibiotic-producing soil bacteria (Streptomyces griseus andStreptomyces coelicolor) were used to examine the ecological role of antibiotic production. Streptomycetes were competed against sensitive and resistantBacillus subtilis, another soil bacterium, on surface (agar) culture. The ecological role of antibiotics was examined in three levels of competition. (1) Capacity of antibiotics to allow invasion of producing organisms (B. subtilis established and streptomycetes added later). (2) Capacity of antibiotics to mediate competition between established populations (B. subtilis and streptomycetes co-inoculated). (3) Capacity of antibiotics to prevent invasion by competitors (streptomycetes established andB. subtilis added later). Antibiotic production was found to play a significant role in preventing the invasion of competitors in these experiments. Antibiotic production did not improve the ability of producers to invade a population of sensitive cells nor did it play a strong role in mediating competition between established populations. Antibiotic production also selected for antibiotic-resistant bacteria among invading competitors.  相似文献   

5.
Using five species of bacteria as the test organisms, 151 species of British marine algae have been screened for the production of antibiotics. Of these, Asparagopsis armata, Bonnemaisonia asparagoides, Bonnemaisonia hamifera, Chondrus crispus, Dilsea carnosa, Gloiosiphonia capillaris, Sphondylothamnion multifidum, Desmarestia aculeata, Desmarestia ligulata, Laminaria digitata, Dictyopteris membranacea, Dictyota dichotoma, Halidrys siliquosa and most members of the family Rhodomelaceae appear to possess outstanding antibacterial properties. Although the production of antibiotics would appear to be a characteristic of several families, it has not been possible to establish any major correlation between taxonomy and antibiotic production. In the case of two closely related and morphologically similar species, Chondrus crispus and Gigartina stellata, the former possesses considerable degrees of antimicrobial activity whilst the latter exhibits no such activity. The results also indicate that the production of antibiotics by the algae is affected by the season of the year.  相似文献   

6.
Aims: To evaluate the influence of environmental parameters on the production of antibiotics (xenocoumacins and nematophin) by Xenorhabdus nematophila and enhance the antibiotic activity. Methods and Results: Response surface methodology (RSM) was employed to study the effects of five parameters (the initial pH, medium volume in flask, rotary speed, temperature and inoculation volume) on the production of antibiotics in flask cultures by X. nematophila YL001. A 25?1‐factorial central composite design was chosen to explain the combined effects of the five parameters and to design a minimum number of experiments. The experimental results and software‐predicted values of production of antibiotics were comparable. The statistical analysis of the results showed that, in the range studied, medium volume in flask, rotary speed, temperature and inoculation volume had a significant effect (P < 0·05) on the production of antibiotics at their individual level, medium volume in flask and rotary speed showed a significant influence at interactive level and were most significant at individual level. The maximum antibiotic activity was achieved at the initial pH 7·64, medium volume in 250 ml flask 25 ml, rotary speed of 220 rev min?1, temperature 27·8°C and inoculation volume of 15·0%. Maximum antibiotic activity of 331·7 U ml?1 was achieved under the optimized condition. Conclusions: As far as known, there are no reports of production of antibiotic from X. nematophila by engineering the condition of fermentation using RSM. The results strongly support the use of RSM for fermentation condition optimization. The optimization of the environmental parameters resulted not only in a 43·4% higher antibiotic activity than unoptimized conditions but also in a reduced amount of the experiments. The chosen method of optimization of fermentation condition was efficient, relatively simple and time and material saving. Significance and Impact of the Study: This study should contribute towards improving the antibiotics activity of X. nematophila. Integrated into a broader study of the impact of environmental factors on the production of antibiotic, this work should help to build more rational control strategy, possibly involving scale‐up of production of antibiotics by X. nematophila.  相似文献   

7.
Bacteria in the soil compete for limited resources. One of the ways they might do this is by producing antibiotics, but the metabolic costs of antibiotics and their low concentrations have caused uncertainty about the ecological role of these products for the bacteria that produce them. Here, we examine the benefits of streptomycin production by the filamentous bacterium Streptomyces griseus. We first provide evidence that streptomycin production enables S. griseus to kill and invade the susceptible species, S. coelicolor, but not a streptomycin-resistant mutant of this species. Next, we show that the benefits of streptomycin production are density dependent, because production scales positively with cell number, and frequency dependent, with a threshold of invasion of S. griseus at around 1%. Finally, using serial transfer experiments where spatial structure is either maintained or destroyed, we show that spatial structure reduces the threshold frequency of invasion by more than 100-fold, indicating that antibiotic production can permit invasion from extreme rarity. Our results show that streptomycin is both an offensive and defensive weapon that facilitates invasion into occupied habitats and also protects against invasion by competitors. They also indicate that the benefits of antibiotic production rely on ecological interactions occurring at small local scales.  相似文献   

8.
Mutants of Bacillus brevis No. 47 that grew in synthetic media containing a high concentration of ammonium sulfate were stable and had high protein production. Among various antibiotics tested, inhibitors of cell wall synthesis, such as bacitracin or β-lactam antibiotics, were effective in greatly increasing the accumulation of exoproteins.

When 60 µg/ml of bacitracin was added to the culture at the early logarithmic growth phase, about 9 mg/ml of proteins was produced. Such a protein yield was estimated to be nearly maximum from a given amount of glucose. Alterations in cell wall components were found in cells grown in the presence of bacitracin. Possible relationships between cell wall structure and protein production were discussed.  相似文献   

9.
For bacteria growing in colonies, spatial structure can allow maintenance of costly traits such as the production of antibiotics. Using spatially structured environments, Westhoff et al. examined the benefits of streptomycin production for the bacterium Streptomyces griseus in competition with a streptomycin-susceptible strain. Streptomyces griseus outcompeted susceptible competitors, but the benefit of its antibiotic decreased as competitor resistance to streptomycin increased. Spatial structure also increased the ability of S. griseus to invade susceptible competitor populations from low starting densities. These results demonstrate that spatially structured environments can both provide and amplify benefits of antibiotics to antibiotic-producing bacteria on a microbial scale.  相似文献   

10.
Colonies of sixty-five filamentous cyanobacteria were screened for the production of temperate phages and/or antibiotics on solid medium. None of them was observed to release phages. However, seven N2-fixing strains were found to produce antibiotics very active against other cyanobacteria. The antibiotic produced by Nostoc sp. 78-11 A-E represents a bacteriocin of low molecular weight. Nostoc sp. ATCC 29132 appears to secrete, together with an antibiotic, a protein that inhibits its action.  相似文献   

11.

Background  

Quorum sensing is a form of cell-to-cell communication that allows bacteria to control a wide range of physiological processes in a population density-dependent manner. Production of peptide antibiotics is one of the processes regulated by quorum sensing in several species of Gram-positive bacteria, including strains of Carnobacterium maltaromaticum. This bacterium and its peptide antibiotics are of interest due to their potential applications in food preservation. The molecular bases of the quorum sensing phenomenon controlling peptide antibiotic production in C. maltaromaticum remain poorly understood. The present study was aimed at gaining a deeper insight into the molecular mechanism involved in quorum sensing-mediated regulation of peptide antibiotic (bacteriocin) production by C. maltaromaticum. We report the functional analyses of the CS (autoinducer)-CbnK (histidine protein kinase)-CbnR (response regulator) three-component regulatory system and the three regulated promoters involved in peptide antibiotic production in C. maltaromaticum LV17B.  相似文献   

12.
Antibiotic resistance remains a major global public health threat that requires sustained discovery of novel antibacterial agents with unexploited scaffolds. Structure-activity relationship of the first-generation aryl isonitrile compounds we synthesized led to an initial lead molecule that informed the synthesis of a second-generation of aryl isonitriles. From this new series of 20 compounds, three analogues inhibited growth of methicillin-resistant Staphylococcus aureus (MRSA) (from 1 to 4?µM) and were safe to human keratinocytes. Compound 19, with an additional isonitrile group exhibited improved activity against MRSA compared to the first-generation lead compound. This compound emerged as a candidate worthy of further investigation and further reinforced the importance of the isonitrile functionality in the compounds’ anti-MRSA activity. In a murine skin wound model, 19 significantly reduced the burden of MRSA, similar to the antibiotic fusidic acid. In summary, 19 was identified as a new lead aryl isonitrile compound effective against MRSA.  相似文献   

13.
Pseudomonas chlororaphis strain PA23 has demonstrated excellent biocontrol in the canola phyllosphere. This bacterium produces the non-volatile antibiotics phenazine and pyrrolnitrin as well as the volatile antibiotics nonanal, benzothiazole and 2-ethyl-1-hexanol. In vitro experiments were conducted to study the effects of different mutations on the production of these three organic volatile antibiotics by PA23. In planta experiments in the greenhouse investigated the role of the non-volatile antibiotics on root colonization and biocontrol ability of PA23 against Sclerotinia sclerotiorum on sunflower. Analysis of phenazine- and pyrrolnitrin-deficient Tn mutants of PA23 revealed no differences in production of the three volatile antibiotics. On all sampling dates, PA23 applied alone or in combination with the mutants showed significantly higher (P = 0.05) root bacterial number and Sclerotinia wilt suppression (P = 0.05). Decline of the bacterial population seemed to be inversely proportional to/or negatively correlated with the number of antibiotics produced by PA23 but the relative importance of phenazine or pyrrolnitrin on root colonization and/or wilt suppression was not clear. In several cases, the strains producing at least one antibiotic maintained relatively higher bacterial numbers than non-producing strains. However, by 6 weeks after sowing, there was a rapid and significant (P = 0.05) increase in the proportion of introduced bacteria capable of producing at least one antibiotic over the total bacterial population. Furthermore, combining certain mutants with PA23 reduced the root colonization and biocontrol ability of PA23. Strain PA23-314 (gacS mutant) showed competitive colonization in comparison to the other mutants for most sampling dates.  相似文献   

14.
The alkaloids 12-epi-hapalindole E isonitrile,isolated from the cyanobacterium Fischerellasp., and the indolophenanthridine calothrixin A, fromCalothrix sp., were characterized in terms oftheir ability to kill several organisms and celltypes, and their biochemical modes of action. Bothcompounds inhibited RNA synthesis, and consequentlyprotein synthesis, in Bacillus subtilis. Calothrixin A also inhibited DNA replication, thehapalindole having little effect on this process. Measurements of in vitro RNA synthesis confirmedthe in vivo results and suggested that bothcompounds inhibit RNA polymerase directly; the degreeof inhibition was independent of the DNAconcentration, but strongly dependent on thepolymerase concentration.  相似文献   

15.
Amycolatopsis, genus of a rare actinomycete, produces many clinically important antibiotics, such as rifamycin and vancomycin. Although GlnR of Amycolatopsis mediterranei is a direct activator of the glnA gene expression, the production of GlnR does not linearly correlate with the expression of glnA under different nitrogen conditions. Moreover, A. mediterranei GlnR apparently inhibits rifamycin biosynthesis in the absence of nitrate but is indispensable for the nitrate-stimulating effect for its production, which leads to the hyper-production of rifamycin. When glnR of A. mediterranei was introduced into its phylogenetically related organism, Streptomyces coelicolor, we found that GlnR widely participated in the host strain’s secondary metabolism, resemblance to the phenotypes of a unique S. coelicolor glnR mutant, FS2. In contrast, absence or increment in copy number of the native S. coelicolor glnR did not result in a detectable pleiotrophic effect. We thus suggest that GlnR is a global regulator with a dual functional impact upon nitrogen metabolism and related antibiotics production.  相似文献   

16.
The glycopeptide teicoplanin isolated from the fermentation broth of Actinoplanes teichomyceticus is used to treat serious Gram-positive bacterial infections that are resistant to other antibiotics, e.g. β-lactams. The long time frame and progressively broader clinical use of teicoplanin has eventually led to the emergence and spreading of resistance in enterococci and staphylococci towards the antibiotics. Given the structural complexity of the natural product, only fermentative routes are available for bulk production of teicoplanin even though the total synthesis of the antibiotic has been accomplished. Because the low productivity (0.1–3.1 g/L) is a limitation to the commercial production of teicoplanin, substantial effort has been devoted to the strain improvement and process development for enhancing the productivity. This review summarizes the current state of the action mechanism, antibacterial activity, resistance mechanism, biotechnological production, and application of teicoplanin. Hyung-Moo Jung and Marimuthu Jeya equally contributed to this work.  相似文献   

17.
Streptomycetes are soil microorganisms with the potential to produce a broad spectrum of secondary metabolities. The production of antibiotics is accompanied by a decrease in protein synthesis, which raises the question of how these bacteria survived the transition from the primary to the secondary metabolism. Translating ribosomes incapable to properly elongate or terminate polypeptide chain activate bacterial trans‐translation system. Abundance and stability of the tmRNA during growth of Streptomyces collinus and Streptomyces griseus producing kirromycin and streptomycin, respectively, was analysed. The level of tmRNA is mostly proportional to the activity of the translational system. We demonstrate that the addition of sub‐inhibitory concentrations of produced antibiotics to the cultures from the beginning of the exponential phase of growth leads to an increase in tmRNA levels and to an incorporation of amino acids into the tag‐peptides at trans‐translation of stalled ribosomes. These findings suggest that produced antibiotics induce tmRNA that facilitate reactivation of stalled complex of ribosomes and maintain viability. The effect of antibiotics that inhibit the cell‐wall turnover, DNA, RNA or protein synthesis on the level of tmRNA was examined. Antibiotics interfering with ribosomal target sites are more effective at stimulation of the tmRNA level in streptomycetes examined than those affecting the synthesis of DNA, RNA or the cell wall.  相似文献   

18.
The effects of a mixture of penicillin G and streptomycin on the growth and C2 toxin production of a marine dinoflagellate, Alexandrium tamarense CI01, were investigated to determine if antibiotic treatment would increase the toxin yield of the cultured algae in batch cultures. Algal growth and toxin production were both enhanced markedly when the culture was supplemented with the antibiotics, each at an initial concentration of 100 unit ml−1 in medium,2 but were severely inhibited when the concentration was 500 unit ml−1 or higher. Short-term pretreatment of algal inocula with the antibiotics at 100, 500, and 1000 unit ml−1 all produced the enhancing effects on the algal cultures in an autoclaved medium. A prolonged antibiotic pretreatment of the algal culture followed by repeated sterile cultivation resulted in an algal culture free of cultivable bacteria. This “drug-treated” culture became more resistant to the toxicity and more responsive to the enhancing effects of the antibiotics. Our results indicated that the antibiotics can enhance growth and C2 toxin productivity not only through their inhibition of the growth of bacteria that compete for nutrients with the coexisting algae, but also through their direct effects on the physiology of the algae. Supplementation of the two antibiotics therefore is an efficient way to increase the yield of C2 toxin in the production cultures of A. tamarense CI01.  相似文献   

19.
The presence of antibiotic- and biosurfactant-producing strains of fluorescent pseudomonads in a closed hydroponic system equipped with a slow filter was investigated. A total of 271 strains of pseudomonads were isolated before the filter, from the filter skin and from the effluent. Production of biosurfactants was determined using the drop-collapse method. The ability of the strains to inhibit the growth of the plant pathogens Pythium ultimum, Phytophthora cryptogea and Fusarium oxysporum was determined using dual culture plating. The influence of carbon sources on production was determined for selected strains, which also were identified to species level. Production of antibiotics or biosurfactants was observed to be a common trait among the fluorescent pseudomonads within the closed hydroponic system and it was affected by the filter. Pythium ultimum was the pathogen that was most sensitive to antibiotics produced by the fluorescent pseudomonads. The results indicated a strong influence of nutritional resources on antibiotic and biosurfactant production.  相似文献   

20.
Isonitrile hydratase is a novel enzyme in Pseudomonas putida N19-2 that catalyzes the conversion of isonitriles to N-substituted formamides. Based on N-terminal and internal amino acid sequences, a 535-bp DNA fragment corresponding to a portion of the isonitrile hydratase gene was amplified, which was used as a probe to clone a 6.4-kb DNA fragment containing the whole gene. Sequence analysis of the 6.4-kb fragment revealed that the isonitrile hydratase gene (inhA) was 684 nucleotides long and encoded a protein with a molecular mass of 24,211 Da. Overexpression of inhA in Escherichia coli gave a large amount of soluble isonitrile hydratase exhibiting the same molecular and catalytic properties as the native enzyme from the Pseudomonas strain. The predicted amino acid sequence of inhA showed low similarity to that of an intracellular protease in Pyrococcus horikoshii (PH1704), and an active cysteine residue in the protease was conserved in the isonitrile hydratase at the corresponding position (Cys-101). A mutant enzyme containing Ala instead of Cys-101 did not exhibit isonitrile hydratase activity at all, demonstrating the essential role of this residue in the catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号