首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus licheniformis L-arabinose isomerase (BLAI) with a broad pH range, high substrate specificity, and high catalytic efficiency for L-arabinose was immobilized on various supports. Eupergit C, activated-carboxymethylcellulose, CNBr-activated agarose, chitosan, and alginate were tested as supports, and Eupergit C was selected as the most effective. After determination of the optimum enzyme concentration, the effects of pH and temperature were investigated using a response surface methodology. The immobilized BLAI enzyme retained 86.4% of the activity of the free enzyme. The optimal pH for the immobilized BLAI was 8.0, and immobilization improved the optimal temperature from 50 °C (free enzyme) to a range between 55 and 65 °C. The half life improved from 2 at 50 °C to 212 h at 55 °C following immobilization. The immobilized BLAI was used for semi-continuous production of L-ribulose. After 8 batch cycles, 95.1% of the BLAI activity was retained. This simple immobilization procedure and the high stability of the final immobilized BLAI on Eupergit C provide a promising solution for large-scale production of L-ribulose from an inexpensive L-arabinose precursor.  相似文献   

2.
Production of d-xylose and l-arabinose isomerases by lactic acid bacteria was greatly promoted by the addition of manganese ions in cultural medium. Effective concentration of the ions was 5 × 1O-3 m. Ferrous ions were also effective for the production of d-xylose isomerase and cobaltous ions were somewhat effective for the production of l-arabinose isomerase. Zinc and cadmium ions inhibited bacterial growth. It was possible to increase the production of isomerase by changing MnSO4 concentration to 5× 10-3 m (0.l1 %) in place of 0.001 per cent in the normal medium.

Column chromatographic procedures for the purification of pentose isomerases were carried out. Cation and anion exchange resins were not suitable because of their low exchange capacities and instability of the enzyme at acidic pH range. But the isomerases were successfully purified by DEAE-cellulose column chromatography with high recovery (85~90%). Using a Tris buffer, KCl concentration was increased in gradient. d-Xylose isomerase was eluted at pH 7.0 at 0~0.2 m KCl, and l-arabinose isomerase at pH 8.0 at 0~0.4 m KCl. The purified isomerases, d-xylose isomerase and l-arabinose isomerase, both required manganese ions specifically for their activities.

D-Xylose isomerase and l-arabinose isomerase are different enzymes which can be separated from each other with acetone fractionation at pH 4.8~5.0, heat treatment or chromatography on a colnmn of DEAE-cellulose. In DEAE-cellulose chromatography with a linear gradient elution method, d-xylose isomerase is recovered in the first peak at pH 7.0 (Tris bnffer) with 0~0.2 m KCl, and l-arabinose isomerase is eluted in the second peak at pH 8.0 (Tris buffer) with a larger ionic strength.  相似文献   

3.
ω-Amino acid: pyruvate aminotransferase, purified to homogeneity and crystallized from a Pseudomonas sp. F–126, has a molecular weight of 172,000 or 167,000±3000 as determined by the gel-filtration or sedimentation equilibrium method, respectively. The enzyme catalyzes the transamination between various ω-amino acids or amines and pyruvate which is the exclusive amino acceptor. α-Amino acids except l-α-alanine are inert as amino donor. The Michaelis constants are 3.3 mm for β-alanine, 19 mm for 2-aminoethane sulfonate and 3.3 mm for pyruvate. The enzyme has a maximum activity in the pH range of 8.5~10.5. The enzyme is stable at pH 8.0~10.0 and at up to 65°C at pH 8.0. Carbonyl reagents strongly inhibit the enzyme activity. Pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate reactivate the enzyme inactivated by carbonyl reagents. The inhibition constants were determined to be 0.73 mm for d-penicillamine and 0.58 mm for d-cycloserine. Thiol reagents, chelating agents and l-α-amino acids showed no effect on the enzyme activity.  相似文献   

4.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

5.
Productivity of extracellular glucose oxidase was examined for various microorganisms and it was found in strains belonging to genus Penicillium except one species of Tallalomyces.

As the best glucose oxidase producer, Penicillium purpurogenum No. 778 was isolated from natural source. This microorganism produced 32,000 units per ml broth of glucose oxidase in a simple medium containing beet molasses, NaNO3 and KH2PO4 by submerged culture for 3 days. That value was about 10-times of that of Penicillium amagasakiense which has been known as an excellent glucose oxidase producer.

Culture conditions for glucose oxidase production were examined, which were extremely different among microbial species. In the case of Penicillium chrysogenum AJ 7007 and Penicillium purpurogenum No. 778, the effects of aeration and carbon sources were remarkably different from each other.

Penicillium purpurogenum No. 778 produces catalase sufficiently in a culture broth for glucose oxidase application in food industry.

Glucose oxidase was purified about 25-fold from culture supernatants of Penicillium purpurogenum No. 778, and some properties of the enzyme were examined. The optimum temperature and pH for the activity were 35°C and 5.0, respectively. The enzyme was stable at pH 5.0 to 7.0 when it was incubated at 40°C for 2 hr, while it was stable at temperature lower than 50°C when incubated at pH 5.6 for 15 min. The enzyme was specific for d-glucose and apparent Michaelis constant for d-glucose was 12.5 mm. The enzyme was inhibited by 1 mm of HgCl2, CuSO4, NaHSO4 and phenylhydrazine, but not inhibited by 1 mm of p-hydroxy-mercuribenzoate, EDTA, hydroxylamine and dimedone. Four percents NaCl inhibited the activity about 50%, while the addition of ethanol (from 0 to 16%) increased oxygen uptake more than that expected from the peroxidase activity of catalase.  相似文献   

6.
A new enzyme, N-acetyl- d-hexosamine dehydrogenase (N-acety 1-α-d-hexosamine: NAD+ 1-oxidoreductase), was purified to homogeneity on polyacrylamide gel electrophoresis from a strain of Pseudomonas sp. about 900-fold with a yield of 12 %. The molecular weight of the enzyme was about 124,000 on gel filtration and 30,000 on SD S-polyacrylamide gel electrophoresis, respectively. Its isoelectric point was 4.7. The optimum pH was about 10.0. The enzyme was most stable between pH 8.0 and pH 10.5. The highest enzyme activity was observed with N-acetyl-d-glucosamine (Km = 5.3mm) and N-acetyl-d-galactosamine (Km = 0.8mm) as the sugar substrate. But it was not so active on N-acetyl-d-mannosamine. NAD+ was used specifically as the hydrogen acceptor. The anomeric requirement of the enzyme for N-acetyl-d-glucosamine was the α-pyranose form, and the reaction product was N-acetyl-d-glucosaminic acid. The enzyme activity was inhibited by Hg and SDS, but many divalent cations, metal-chelating reagents, and sulfhydryl reagents had no effect.  相似文献   

7.
L-Arabinose isomerase (L-arabinose ketol-isomerase, EC 5.3.1.4) was demonstrated from the L-arabinose-grown cells of Streptomyces sp. which was isolated from sea water. The enzyme was purified by MnCl2 treatment, fractionation by polyethylene glycol and by column chromatographies on Sephadex G-150 and DEAE-cellulose. The purified enzyme was specific only for L-arabinose and the Michaelis constant for L-arabinose was 40 mM at pH 7.5. Manganese or cobalt ions were effective for the enzyme activity after dialysis against EDTA. The enzyme activity was inhibited competitively by L-arabitoI, ribitol and xylitol, of which inhibition constants were 1.1, 1.0, and 15 mM, respectively.  相似文献   

8.
NADP-dependent maltose dehydrogenase (NADP-MalDH) was completely purified from the cell free extract of alkalophilic Corynebacterium sp. No. 93–1. The molecular weight of the enzyme was estimated as 45,000~48,000. The enzyme did not have a subunit structure. The isoelectric point of the enzyme was estimated as pH 4.48. The pH optimum of the enzyme activity was pH 10.2, and it was stable at pH 6 to 8. The temperature optimum was 40°C, and the enzyme was slightly protected from heat inactivation by 1 mm NADP. The enzyme oxidized d-xylose, maltose and maltotriose, and the Km values for these substrates were 150mm, 250 mm and 270 mm, respectively. Maltotetraose and maltopentaose were suitable substrates. The Km value for NADP was 1.5 mm with 100mm maltose as substrate. The primary product of this reaction from maltose was estimated as maltono-δ-lactone, and it was hydrolyzed non-enzymatically to maltobionic acid. The enzyme was inhibited completely by PCMB, Ag+ and Hg2+.  相似文献   

9.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

10.
The enzymes of methanol oxidation were investigated in a new yeast strain, Pichia pastoris IFP 206, with high yield (0.42 g cell per g of methanol). The following enzymes were detected in cell free extracts of P. pastoris: alcohol oxidase, catalase, formaldehyde and formate dehydrogenases. The alcohol oxidase was purified from cell free extracts of P. pastoris containing high amount of the enzyme (33%) with a good yield (55%). The preparation was homogenous by immunochemical methods. The enzyme had a molecular weight of 675,000 and was composed of eight identical subunits of M.W. 80,000. Each subunit contained one FAD. The N-terminal sequence was found to be: Ala-Ile-Pro-Glu-Glu-Phe-Asp-Ile-Leu-Val-Leu-Gly-The protein had 65 free ?SH groups per molecule. The optimum temperature for the enzyme activity was 37°C and the activation energy was 11.1 kcal/mol. Optimum pH was 7.5 and the enzyme activity was unstable at acidic pH. The apparent Km for methanol were 1.4 and 3.1 mm at oxygen concentrations of 0.19 and 0.93 mm. Similarly, the apparent Kms for oxygen were 0.40 and 1.0 mm at methanol concentrations of 1, 10 and 100 mm. The enzyme oxidized primary alcohols with short carbon chains like ethanol and propanol. Inhibition of enzyme activity by hydrogen peroxide was a consequence of the oxidation of essential ?SH groups. The inhibition was reversed by reducing agents.  相似文献   

11.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

12.
A conjugated enzyme system, alanine dehydrogenase (AIDH) for stereospecific reduction of pyruvate to l-alanine and glucose dehydrogenase (GDH) for regeneration of NADH, were coimmobilized in a nanofiltration membrane bioreactor (NFMBR) for the continuous production of l-alanine from pyruvate with NADH regeneration. Since pyruvate was proved to be unstable at neutral pH, it was kept under acidic conditions and supplied to NFMBR separately from the other substrates. As 0.2 m pyruvate in HCl solution (pH 4), 10 mm NAD, 0.2 m glucose, and 0.2 m NH4Cl in 0.5 m Tris buffer (pH 8) were continuously supplied to NFMBR with immobilized AIDH (100 U/ml) and GDH (140 U/ml) at the retention time of 80 min, the maximum conversion, reactor productivity, and NAD regeneration number were 100%, 320 g/liter/d, and 20,000, respectively. To avoid the effect of pyruvate instability, a consecutive reaction system, lactate dehydrogenase (l-LDH) and AIDH, was also used. In this system, the l-LDH provides pyruvate, the substrate for the AIDH reaction, from l-lactate regenerating NADH simultaneously, so the pyruvate could be consumed as soon as it was produced. As 0.2 m l-lactate, 10 mm NAD, 0.2 m NH4Cl in 0.5 m Tris buffer (pH 8) were continuously supplied to NFMBR with immobilized l-LDH (100 U/ml) and AIDH (100 U/ml) at the retention time of 160 min, the maximum conversion, reactor productivity, and the NAD regeneration number were 100%, 160 g/Iiter/d, and 20,000, respectively.  相似文献   

13.
A glucose isomerase which reversibly catalyzes the reaction between d-glucose and d-fructose was demonstrated in the cell-free extracts of a strain of Streptomyces sp. isolated from soil. The enzyme was produced when the strain was grown in the medium containing xylan or xylan-containing material such as wheat bran. A medium which consists of 3% of wheat bran, 2% of corn steep liquor and 0.024% of CoCl2·6H2O is recommendabie for the production of the glucose isomerase enzyme with the strain. With the enzyme, some conditions for the conversion of d-glucose to d-fructose were also studied. The method is very useful for the production of invert sugar from d-glucose and is now on the way to be applied to the practical use.  相似文献   

14.
A new flavoprotein enzyme, GSH oxidase, was found in the aqueous extract of a wheat bran culture of Penicillium sp. K-6-5. The oxidase is also produced extra and intracellularly in the liquid culture, although the production is much lower than that in the wheat bran culture.

The enzyme has been purified to homogeneity. It shows absorption maxima at 270, 350 and 444 nm and a shoulder around 465 nm and contains 2 mol of FAD per mol of enzyme. The enzyme has a molecular weight of approximately 95,000 and consists of two subunits identical in molecular weight (about 47,000). Balance studies show that 2 mol of GSH are converted to 1 mol of GSSG and hydrogen peroxide with the consumption of 1 mol of oxygen. In addition to GSH, several sulfhydryl compounds are oxidized by the enzyme to a lesser extent. The Michaelis constants are as follows: 0.69 mm for GSH, 3.6 mm for l-cysteine and 6.7 mm for dithiothreitol at pH 7.4. The oxidase scarcely acts on reduced RNase A in contrast to the known sulfhydryl oxidases. The isoelectric point and the optimal pH are 4.2 and 7.4, respectively. The enzyme activity is completely inhibited by addition of 1 mm ZnSO4.  相似文献   

15.
The properties of the tyrosinase from Pseudomonas melanogenum was investigated with the crude enzyme preparation. Optimum temperature and pH of the enzyme were 23°C and 6.8, respectively. l-Tyrosine, d-tyrosine, m-tyrosine, N-acetyl-l-tyrosine and l-DOPA were utilized as a substrate by the enzyme. The value for Km obtained were as follows: l-tyrosine 6.90 × 10?4 m, d-tyrosine 1.43 ×10?3 m and l-DOPA 9.90 × 10?4 m. The enzyme was inhibited by chelating agents of Cu2+ l-cysteine, l-homocysteine, thiourea and diethyl-dithiocarbamate and the inhibition was completely reversed by the addition of excess Cu2+ From these results it is concluded that the enzyme is a copper-containing oxidase.  相似文献   

16.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

17.
α-Amino-ε-caprolactam racemase, which occurs in the cytoplasmic fraction of Achromobacter obae, has been purified to homogeneity. It has a monomeric structure with a molecular weight of approximately 50,000. The absorption spectrum of the enzyme exhibits maxima at 280 and 412 nm at pH 7.3, and is independent of pH from 6.0 to 8.0. One mole of pyridoxal 5′-phosphate is bound per mol of the enzyme. Incubation of the enzyme with hydroxylamine resulted in the formation of the apoenzyme. d- and l-α-Amino-ε-caprolactams are the only substrates. The maximum activity is found at pH 8.8 for both the isomers. Michaelis constants are as follows: 8 mm for d-α-amino-ε-caprolactam, 6mm for l-α-amino-ε-caprolactam and 2.1 × 10?7 m for pyridoxal 5′-phosphate. The enzyme is inhibited significantly by CuSO4, HgCl2, thiol reagents such as N-ethylmaleimide and p-chloromercuribenzoate, and carbonyl reagents (e.g., phenylhydrazine and hydroxylamine). α-Amino-ε-caprolactam racemase catalyzes the α-proton exchange of the substrate with deuteron during racemization in deuterium oxide.  相似文献   

18.
Isocitrate lyase was purified from the purple nonsulfur bacterium Rhodopseudomonas sp. No. 7. The purified enzyme was electrophoretically homogeneous. The molecular weights of the native enzyme and its subunit were estimated to be approximate 250,000 and 62,000 by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis, respectively. The optimum pH for its activity was 6.5. The optimum temperature was 45°C. The Km for dl-isocitrate was 0.136 mm in potassium phosphate buffer (pH 6.0). Mg2+ was required for full activity of the enzyme as a non-essential activator. The enzyme activity was inhibited by SH-blocking reagents. Non-competitive inhibitory effects on the enzyme were examined with malate and succinate. The Ki for malate and succinate were 2.7 and 0.24 mm, respectively.  相似文献   

19.
A bacterial strain, HN-56, having an activity of d-glucose isomerization was isolated from soil, and was identified to be similar to Aerobacter aerogenes (Kruse) Beijerink. d-Glucose-isomerizing activity was induced when HN-56 was precultured in the media containing d-xylose, d-mannose, lactate, especially d-mannitol. Paper chromatography showed that the ketose formed in reaction system containing d-glucose was d-fructose alone. The optimum pH for the reaction was 6.5~7.0. Sulfhydryl reagents inhibit the reaction, but metal inhibitors affect little if any. With the washed living cells as enzyme source, only arsenate could accumulate d-fructose. In addition, the cells grown with d-mannitol and d-mannose showed no activity of d-xylose isomerase.  相似文献   

20.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号