首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA polymerase has been assayed from chloroplasts of petunia plants cultured in vitro. The enzyme activity depends on the presence of DNA and Mg2+ and is stimulated by K+. A single DNA polymerase band of 75 kDa was shown by SDS–polyacrylamide gel electrophoresis using a DNA-containing gel followed by in situ renaturation of proteins and incubation of the intact gel in a polymerase assay mixture. The enzyme activity was inhibited by N-ethylmaleimide (59% at 1 mM) and dideoxythymidine triphosphate (25% at a ratio ddTTP/dTTP 1:1).

The inhibitory effects of flavonoids on the DNA polymerase activity were studied. The glycosylation of hydroxyl groups on the flavonoids resulted in compounds that behaved as gradually weaker inhibitors with increased size of the substituent. The degree of inhibition decreased in the following order: quercetin > quercetin-3-L-rhamnoside > quercetin-3-rutinoside. Similarly baicalein-7-D-glucuronide was less active than baicalein. On the other hand, the number and position of hydroxyls of A ring was important for the inhibitory capacity. The flavonoids with a greater number of hydroxyl groups were more potent inhibitors of the chloroplast DNA polymerase.  相似文献   

2.
The complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha has made clear the entire gene organization of the chloroplast genome. Quite a few genes encoding components of photosynthesis and protein synthesis machinery have been identified by comparative computer analysis. Other genes involved in photosynthesis, respiratory electron transport, and membrane-associated transport in chloroplasts were predicted by the amino acid sequence homology and secondary structure of gene products. Thirty-three open reading frames in the liverwort chloroplast genome remain unidentified. However, most of these open reading frames are also conserved in the chloroplast genomes of two species, a liverwort, Marchantia polymorpha, and tobacco, Nicotiana tabacum, indicating their active functions in chloroplasts.Abbreviations bp base pair - kDa kilodalton - IR inverted repeat - ORF open reading frame - DALA -aminolevulinate  相似文献   

3.
We described product analysis of DNA synthesized in chloroplast lysate from liverwort Marchantia polymorpha L. cell suspension cultures. Characteristics of in vitro DNA synthesis by chloroplast lysate using bacteriophage ?X174 single-stranded DNA were very similar to those in the case of double-stranded calf thymus DNA reported previously. Autoradiographic analysis clearly showed the incorporation of radioactive [α-32P]-dCTP into DNA molecules associated with bacteriophage ?X174 single-stranded template DNA, indicating conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III, double-stranded linear molecule). Experiments on the fate of [32P]-labeled single-stranded DNA also showed a clear conversion of the single-stranded DNA to double-stranded DNA. Furthermore, patterns of sucrose density gradient centrifugations (neutral and alkaline) showed the production of two major components in in vitro DNA synthesis by chloroplast lysate. This also indicated conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III form). Our results suggest that the mechanism of chloroplast DNA replication could be the mode of strand-displacement DNA synthesis as seen in animal mitochondrial DNA synthesis.  相似文献   

4.
A simple method has been developed for DNA isolation from purified chloroplasts of Marchantia polymorpha L. (liverwort) cell suspension cultures. Purified chloroplasts exhibited ribulose-bisphosphate carboxylase activity comparable to that of Fraction 1 protein obtained from Nicotiana tabacum. Fraction 1 protein isolated from purified chloroplasts clearly showed large and small subunits when subjected to isoelectric focussing. These results indicate that the purified chloroplasts are intact. DNA isolated from purified chloroplasts showed a covalently closed circular form, and restriction endonuclease digestions of the chloroplast DNA showed clear fragmentation indicating that the DNA was sufficiently free from those of other organelles.  相似文献   

5.
A cosmid library and physical maps of mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, were constructed using the cosmid clones. Electrophoresis profile and the physical maps indicated that the liverwort mtDNA was approximately 183 kb long, the smallest among plant mtDNAs, and that it consisted of a single circular molecule. Southern hybridization analysis showed that genes typical to the mitochondrial genome existed in a single copy, and also that there was no incorporation of chloroplast DNA fragments into the mitochondrial genome.  相似文献   

6.
7.
Aerobic dissimilation of l-rhamnose by various genera and species of yeasts was examined. Of 63 strains tested, 12 utilized l-rhamnose fairly well, and 7 strains, Debary-omyces klöckeri, Pichia pseudopolymorpha, P. rhodanensis, P. robertsii, P. wickerhamii, Candida polymorpha and Torulopsis famata, produced an appreciable amount of l-rhamnonic acid and/or 1,2-propanediol. These two main products were isolated in pure forms from the fermented broth of C. polymorpha and identified. Candida polymorpha produced l-rhamnonic acid and 1,2-propanediol from l-rhamnose in the presence of CaCO3 at good yield of 38% of sugar consumed.  相似文献   

8.
Organelles change their subcellular positions in response to various environmental conditions. Recently, we reported that cold treatments alter the intracellular position of chloroplasts and nuclei (cold positioning) in the fern Adiantum capillus‐veneris; chloroplasts and nuclei localized to the periclinal cell wall relocated to anticlinal cell wall after cold treatments. To further understand organelle positioning under cold conditions, we studied cold‐induced organelle relocation in the liverwort Marchantia polymorpha L. When sporelings and gemmmalings were treated under low temperature (5 °C), chloroplast cold positioning response was successfully induced both in the sporelings and the gemmmalings of M. polymorpha. Using a genetic transformation, nuclei, mitochondria or peroxisomes were visualized with a fluorescent protein, and the transgenic gemmmalings were incubated under the cold condition. Nuclei and peroxisomes, but not mitochondria, clearly relocated from the periclinal cell wall to the anticlinal cell wall after cold treatments. Our findings suggest that several organelles concurrently change their positions in the liverwort cell to cope with cold temperature.  相似文献   

9.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

10.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   

11.
β-N-Acetyl-D-hexosaminidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purifted by making an acetone-dried preparation of the mid-gut gland, extracting with 50 mM citrate-phosphate buffer (pH 4.0) (about 13% of the extracted proteins was β-N-acetyl-D-hexosaminidase), ammonium sulfate fractionation, and column chromatographies on CM-Sepharose and DEAE-Sepharose. The purifted β-N-acetyl-D-hexosaminidase was homogeneous on SDS–PAGE, and sufficiently free from other exo-type glycosidases. The molecular weight was 56,000 by SDS–PAGE. The enzyme hydrolyzed both p-nitrophenyl β-N-acetyl-D-glucosaminide and p-nitrophenyl β-N-acetyl-D-galactosaminide. For p-nitrophenyl β-N-acetyl-D-glucosaminide, the pH optimum was 3.7, the optimum temperature was 45°C, and the Km was 0.24 mM. For p-nitrophenyl β-N-acetyl-D-galactosaminide, these were pH 3.4, 45°C, and 0.15 mM, respectively. The enzyme liberated non-reducing terminal β-Iinked N-acetyl-D-glucosamine or N-acetyl-D-galactosamine from various 2-aminopyridyl derivatives of oligosaccharides of N-glycan or glycolipid type except of GM2-tetrasaccharide. As the enzyme was stable around pH 3.5–5.5, it may be useful for long time reactions around the optimum pH.  相似文献   

12.
UDP-glucose pyrophosphorylase of Jerusalem artichoke tubers was purified 90-fold over the crude extract. The purified enzyme preparation absolutely required magnesium ions for activity. Cobalt ions were 60% as effective as magnesium ions; other divalent cations including manganese showed little or no effect. This enzyme had a pH optimum of 8.5 and a temperature optimum of 40°C. ATP and UDP inhibited the activity of this enzyme in both forward and backward directions. Km values for UDP-glucose, inorganic pyrophosphate, glucose-1-phosphate and UTP were determined to be 4.45 × 10?4 M, 2.33 × 10?4 M, 9.38 × 10?4 M and 2.98 × 10?4 M, respectively. These results are discussed in comparison with those of UDP-glucose pyrophosphorylases isolated from other plants.  相似文献   

13.
In the course of screening for antioxidative carotenoids from bacteria, we isolated and identified a novel carotenoid, OH-chlorobactene glucoside hexadecanoate (4), and rare carotenoids, OH-chlorobactene glucoside (1), OH-γ-carotene glucoside (2) and OH-4-keto-γ-carotene glucoside hexadecanoate (3) from Rhodococcus sp. CIP. The singlet oxygen (1O2) quenching model of these carotenoids showed potent antioxidative activities IC50 14.6 μM for OH-chlorobactene glucoside hexadecanoate (4), 6.5 μM for OH-chlorobactene glucoside (1), 9.9 μM for OH-γ-carotene glucoside (2) and 7.3 μM for OH-4-keto-γ-carotene glucoside hexadecanoate (3).  相似文献   

14.
Blue pigment-producing callus was induced from fruit of Clerodendron trichotomum Thunb. on Linsmaier and Skoog (LS) medium with 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Callus grew on LS medium with either 2,4-D or 1-naphthaleneacetic acid (NAA) on subculture. Callus growth and blue pigment formation were much improved by selection on LS gellan gum medium with 2 μM NAA. Kinetin and benzyladenine (1 μM) inhibited blue pigment formation. One of the blue pigments was confirmed to be trichotomine by HPLC, TLC, and NMR spectra; two others were presumed to be trichotomine G1 and N,N′-di(D-glucopyranosyl)trichotomine on the basis of comparison with the blue pigments from C. trichotomum fruit on HPLC.  相似文献   

15.
Hydrogen peroxide is a well-known mediator of apoptosis. As a mechanism for H2O2-induced apoptosis, both a mitochondrial Cyt.c-dependent pathway and a lysosome-mediated pathway have been suggested. However, the relative roles of and the relation between these two pathways in H2O2-induced apoptosis remain to be discovered. In this study, to find the relative roles of the lysosomal and mitochondrial pathways, the effects of E-64-d, a cell-permeable inhibitor of lysosomal cysteine proteases, on apoptosis caused by H2O2 in HL-60 cells were investigated. It was found that the concentration of H2O2 strongly affected the inhibitory effect of E-64-d on the apoptosis in HL-60 cells: dose-dependent inhibition (up to 40%) of both DNA fragmentation and caspase-3 activation was observed when a high concentration of H2O2 (50 μM) was used to induce apoptosis, but no inhibitory effect was detected when a low concentration (10 μM) was used. Consistent with these observations, apparent lysosomal destabilization was observed only with 50 μM H2O2. The release of mitochondrial Cyt.c, in contrast, was observed at both 10 μM and 50 μM. These results indicated that the mitochondrial Cyt.c-mediated pathway predominates in the H2O2-induced apoptosis in HL-60 cells and the lysosomal mediated pathway is partially involved when high concentrations of H2O2 are used to induce apoptosis.  相似文献   

16.
The theanine (THE: γ-glutamylethylamide) content and the growth rate of cultured cells of tea (Camellia sinensis L.) were increased greatly to 22.3%, in dry wt. with a medium containing 60 mM nitrate and 25 mM ethylamine as a nitrogen source. The optimum concentrations of nitrate, Mg2+, and K+ for the growth and formation of THE in suspension cells were 40mM, 3mM, and 104mM, respectively. The yield of THE accumulated in the cultured cells with the medium modified for THE formation was increased greatly due to a great increase of the growth rate.  相似文献   

17.
We produced a monoclonal antibody (mAb) against N G,N G-dimethyl-L-arginine (asymmetric dimethylarginine: ADMA), an endogenous competitive inhibitor of nitric oxide synthase (NOS), and developed an enzyme-linked immunosorbent assay (ELISA). The competitive ELISA method using the mAb determined 5 nM–100 nM ADMA, and ADMA levels in human plasma and urine were found to be 0.78 μM and 51.3 μmol/g of creatinine respectively.  相似文献   

18.
Kinetics of the acyl transfer catalyzed by Xanthomonas α-amino acid ester hydrolase was studied. The enzyme hydrolyzed d-α-phenylglycine methyl ester (d-PG-OMe) to give equimolar amounts of d-α-phenylglycine and methanol. With d-PG-OMe as an acyl donor and 7-amino-3-deacetoxy-cephalosporanic acid (7-ADCA) as an acyl acceptor, the enzyme transferred the acyl group from d-PG-OMe to 7-ADCA in competition with water. The addition of amine nucleophiles (7-ADCA and 6-aminopenicillanic acid) decreased the molecular activity (ko) of the enzyme-catalyzed hydrolysis of d-PG-OMe, whereas it did not alter the Michaelis constant (KM), and plots of l/ko against the initial concentration of a nucleophile (no) gave a straight line. These results support the assumptions that the overall process for hydrolysis and acyl transfer proceeds through a common acyl-enzyme intermediate, that the acylation step of the enzyme is rate-limiting, and that the transfer competes with the hydrolysis of the acyl donor.  相似文献   

19.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 μM and 5 μM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 μM, and 70% by 10 μM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

20.
Arthrobacter sp. Q36 produces a novel enzyme, maltooligosyl trehalose synthase, which catalyzes the conversion of maltooligosaccharide into the non-reducing saccharide, maltooligosyl trehalose (α-maltooligosyl α-D-glucoside) by intramolecular transglycosylation. The enzyme was purified from a cell-free extract to an electrophoretically homogeneous state by successive column chromatography on Sepabeads FP-DA13, DEAE-Sephadex A-50, Ultrogel AcA44, and Butyl-Toyopearl 650M. The enzyme was specific for maltooligosaccharides except maltose, and catalyzed the conversion to form maltooligosyl trehalose. The Km of the enzyme for maltotetraose, maltopentaose, maltohexaose, and maltoheptaose were 22.9mM, 8.7mM, 1.4mM, and 0.9mM, respectively. The enzyme had a molecular mass of 81,000 by SDS-polyacrylamide gel electrophoresis and a pI of 4.1 by gel isoelectrofocusing. The N-terminal and C-terminal amino acids of the enzyme were methionine and serine, respectively. The enzyme showed the highest activity at pH 7.0 and 40°C, and was stable from pH 6.0 to 9.5 and up to 40°C. The enzyme activity was inhibited by Hg2+ and Cu2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号