首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
—Guinea pig cerebral slices were incubated in oxygenated Krebs-Ringer bicarbonate glucose saline for periods of 1 s to 60 min, and their swelling and Na+ and K+ cone were measured. The swelling was at the rate of 8 per cent for the 1st min, and 0·8 per cent for the next 29 min; it fell significantly during the subsequent 30 min (P= 0·05). The Na+ and K+ concn in the tissue fluctuated during the 1st min of incubation, but the Na+ concn had risen to a mean of 108 mm after 1 min incubation and the K+ concn had fallen to a mean of 52 mm by 3 min. The concentrations of these cations did not change significantly after these times. Cerebral slices were also incubated for 30 min in isotonic media modified such that Na+, + K+, Na++ choline+, or K++ choline+ always added up to 150 mm . It was found that about half of the swelling (20-25 per cent) was independent of the Na+ or K+ concn and a further 20-25 per cent of the swelling varied with the cations only if Na+ and K+ were both present and was a function of the K+ concn in the medium (0·15 per cent m-mol). The Na+ concn in the tissue was a mean 8·4 mm after incubation in a Na+-free medium and 7·1 mm in K+ after incubation in a K+-free medium. Cerebral slices in the presence of Na++ K+ excluded one molecule of Na+ for every four molecules in the incubating medium; they accumulated K+ from the medium until the concn in the medium exceeded 130 mm .  相似文献   

2.
Prosopis farcta was grown on hydroculture with additions of 0.5, 10, 50, and 100 mM NaCl and without salt treatment. In plants from a 0.5 mM NaCl treatment, Cl? was taken up into stems and leaves, but Na+ was withheld from the shoot. At 10 mM NaCl, shoot K+ concentration was below that of the control; Na+ and Cl? were taken up to stems and cotyledons in nearly equimolar amounts. However, in the leaves, Na+ concentrations were only half of those of Cl?. With increasing salt stress, Na+ and Cl? were transported to the shoot, but kept at relatively low levels in the roots. Na+/ K+ ratios in roots did not increase proportionally to those in the solution. At an external Na+/K+ of > 5 and a root Na+/K+ of >1 (10 mM NaCl treatment), K+ selectivity was induced which rose exponentially with increasing salt stress; and cell wall protuberances were discovered in the hypodermis at the zone of side root formation. These transfer cells were found neither in roots from the 0.5 mM NaCl treatment nor in the controls. Their possible role in the Na+/K+ selectivity of the roots of Prosopis farcta is discussed.  相似文献   

3.
The mechanism of volume regulation in hypotonic media was analysed in human peripheral blood mononuclear (PBM) cells. Electronic cell sizing showed that hypotonic swelling is followed by a regulatory volume decrease (RVD) phase. This was confirmed by both electron microscopy and by cellular water determinations. The rate of regulatory shrinking was proportional to the degree of hypotonicity in the 0.5–0.9 X isotonic range. Cell viability was only marginally affected in this range. The content of cellular K+ decreased during RVD, while Na+ content remained unchanged. Similarly, the efflux of 86Rb (used as a K+ analog) increased upon dilution, whereas 22Na efflux was not altered. 86Rb uptake was enhanced by hypotonic stress and both ouabain-sensitive and -insensitive components were affected. A ouabain-sensitive stimulation was also seen in Na+- free media. Ouabain partially inhibited RVD only if added to the cells hours before hypotonic challenge. A normal shrinking response was observed in K+-free media, and also in Na+-free media when Li+, choline+, or Tris+ were the substitutes. In high K+ or Rb+ hypotonic media shrinking was absent and a second swelling phase was observed. Cs+ displayed an intermediate behavior, with shrinking observed at lower dilutions and secondary swelling at higher ones. The direction and magnitude of the response also changed when the external K+ concentration was varied and, with 50 mM K+, no regulatory volume change occurred following hypotonic stress. These findings suggest that RVD occurs largely by a passive loss of cellular K+, resulting from a selective increase in permeability to this ion. In addition, the (Na-K) pump appears to be activated upon cell swelling by a mechanism other than Na+ entry into the cell, but this activation is not essential for RVD.  相似文献   

4.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

5.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

6.
The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na+ and K+ in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba2+, ouabain, tetraethylammonium (TEA) and verapamil) on Na+ and K+ secretion and accumulation were examined. Treatment with NaCl (at 0–200 mmol L−1 levels) significantly increased Na+ secretion, whereas KCl treatment (at 0–200 mmol L−1 levels) significantly increased K+ secretion. The ratio of secretion to accumulation of Na+ was higher than that of K+. The changes in Na+ and K+ secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L−1 level, respectively) led to a significant decrease in K+ secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L−1 level, respectively) had little impact on the Na+ secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na+ secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K+ secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na+ and K+ secretion might be the primary cause for the different Na+ and K+ secretion abilities of multicellular salt glands in Tamarix.  相似文献   

7.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

8.
The effects of Ca2+ and cell turgor on Na+ influx were examined in two charophytes, lamprothamnium papulo-SUM (salt-tolerant) and Chara corallina (salt-sensitive), to try to identify causes of salinity toxicity. Mortality was associated with Na+ influx, with the two species showing similar sensitivities to high Na+ influx. In Lamprothamnium, toxic influxes of Na+ occurred at much higher external Na+ concentrations than in Chara. The differences in Na+ influx at the same Na+ concentration were not due to different responses to external Ca2+. Lamprothamnium adjusts its turgor in response to increasing NaCl whereas Chara cannot. In solutions of KC1 up to at least 200 mol m-3, however, Chara regulated turgor, and when KC1 was subsequently replaced with NaCl, Na+ influx was low and similar to that in Lamprothamnium at the same Na* concentration. Chara cells which were not turgor-adjusted in KCI had Na+ influxes 2-5-fold higher than the turgid cells. Thus, it appears that turgor is a major determinant of Na+ influx, and therefore of cell survival. We found no evidence that the mechanism of Na+ influx in Chara is different from that in Lamprothamnium. Higher susceptibility of Chara to NaCl seems to result from inability to regulate turgor, in turn leading to toxic Na+ influx.  相似文献   

9.
以甘草属2种耐盐植物胀果甘草、乌拉尔甘草为材料,用不同浓度(50、100、150、200、250mmol·L-1)NaCl处理幼苗21d后,分析其生物量和根、茎、叶中的Na+、K+含量以及K+/Na+,计算根的离子选择吸收和运输系数,并应用光学显微镜观察比较二者的维管组织结构变化,以揭示2种药用甘草幼苗根对Na+的响应及其维管组织结构的变化特征,探讨甘草的耐盐机理。结果表明:(1)NaCl胁迫使2种甘草幼苗生物量均下降,在NaCl浓度为250mmol·L-1时,胀果甘草、乌拉尔甘草幼苗生物量分别是对照的53.34%、46.21%,胀果甘草耐盐性强于乌拉尔甘草。(2)随着NaCl浓度上升,2种甘草根积累的Na+显著增多,其中胀果甘草在所有盐处理下,根Na+含量均高于其它器官,说明其根对吸收的Na+具有显著截留效应;而乌拉尔甘草只在0~150mmol·L-1 NaCl范围内,根Na+含量显著高于叶片,当NaCl为200、250mmol·L-1时,叶片Na+含量显著高于根,说明乌拉尔甘草根对Na+的截留能力有限。(3)在相同盐处理下,胀果甘草离子选择吸收系数SAK,Na、离子运输系数STK,Na均大于乌拉尔甘草,胀果甘草根抑制Na+、促进K+向地上部运输的能力强于乌拉尔甘草。(4)乌拉尔甘草在NaCl为150、200mmol·L-1、胀果甘草在250mmol·L-1时,根结构对盐胁迫产生应激性响应,维管组织比例显著上升,有助于提高根向上的运输能力,减少盐害。研究表明,2种药用甘草根对Na+截留作用和向上运输时促K+抑Na+能力的差异,是导致其耐盐能力不同的主要原因,根对Na+的积累和截留作用的差异与根的结构响应相吻合,能较好地解释二者的耐盐性差异。  相似文献   

10.
以1年生西伯利亚白刺水培幼苗为材料,研究了不同浓度NaCl(0、200、400mmol·L~(-1))处理对幼苗生长及不同器官(根、茎、叶)中Na~+、K~+、Ca~(2+)、Mg~(2+)的吸收、运输与分配的影响,探讨西伯利亚白刺的盐适应机制。结果表明:(1)200mmol·L~(-1) NaCl处理促进了西伯利亚白刺幼苗的生长及叶片肉质化程度,400mmol·L-1 NaCl处理显著抑制其生长。(2)随着NaCl处理浓度的升高,西伯利亚白刺幼苗根、茎、叶中Na~+含量显著增加,且叶中Na~+含量显著高于茎和根中;根系中K~+含量显著增加;根、茎、叶中Ca~(2+)、Mg~(2+)含量在200mmol·L~(-1) NaCl处理下保持平稳或上升,而在400mmol·L-1 NaCl处理下显著下降。(3)各器官中K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+比值总体随NaCl处理浓度的升高呈下降趋势,且根部离子比值始终高于叶片和茎。(4)随着NaCl处理浓度的升高,西伯利亚白刺幼苗根-茎SK,Na显著下降,而根-茎SCa,Na、SMg,Na及茎-叶SK,Na、SCa,Na、SMg,Na逐渐提高。研究发现,西伯利亚白刺的盐适应机制主要是通过植株的补偿生长效应及叶片对Na~+的聚积作用实现的,同时也与根系对K~+的扣留及茎叶对K~+、Ca~(2+)、Mg~(2+)选择性运输能力增强有关。  相似文献   

11.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

12.
13.
Carrot cells (Daucus carota L.) in suspension culture exposed to medium containing 150 mM NaCl plasmolyzed immediately and deplasmolyzed within 35 to 40 hr. Three days after exposure to NaCl the cells resumed proliferation. Accommodation to salinity and renewal of growth was accompanied by absorption of Na+ from the external medium. On completion of deplasmolysis, K+ concentration in the cytosol doubled and Na+ concentration approximated that of K+. The vacuolar K+ concentration was practically unchanged while Na+ accumulated to a concentration double that of K+. Cl−- accumulation started later and eventually exceeded that of Na+ plus K+. Malate was redistributed during accommodation to salinity and eventually returned to its initial level. Amino acid content in the cytosol increased fivefold, while in the vacuole it remained unchanged. These results show that: 1) recovery from osmotic shock requires absorption of easily penetrating solute, mainly Na+; 2) distribution of solutes, absorbed or synthesized in cells exposed to salinity, is a dynamic process; 3) cells could grow and proliferate in high NaCl content in the cytosol; 4) red beet root cells grown in the presence of NaCl contain higher cytoplasmic Na+ than K+; and 5) during adjustment to salinity small spherical carrot cells survive the osmotic shock and do not show any detectable damage.  相似文献   

14.
The uptake of Na+ and the loss of Ca2+ and K+ by seeds of Acacia tortilis (Forsk.) Hayne (salt tolerant) and A. coriacea DC. (salt sensitive) were determined after 24 h soaking in 250 mol m-1,3 NaCl or in distilled water. Na+ uptake was higher by the seed coat than by the embryo of both species and higher by A. coriacea than by A. tortilis. The greater Na+ uptake by A. coriacea was associated with greater Ca and K+ leakage. The Na+ concentration of solution imbibed by the embryo of both species was lower than the Na+ concentration in the external solution, indicating an exclusion of Na+. When A. tortilis and A. coriacea seeds were treated with a series of NaCl concentration (0–400 mol m-1,3), the exclusion mechanism was particularly clear with A. tortilis at lower concentrations (50 and 150 mol m-1,3) of NaCl. In contrast, the seed coat of both species accumulated Na+. Thus the seed coat may play an important role in ion exchange. These results show that it is important to consider the seed coat and embryo separately rather than the whole seed when considering ion exchange in relation to salinity tolerance.  相似文献   

15.
Calcium-salinity interactions affect ion transport in Chara corallina   总被引:1,自引:1,他引:0  
Detached internodes of Chara corallina survived in solutions containing 100 mol m?3 NaCl when the external concentration of Ca2+ was greater than 1 mol m?3. Na+ influx was roughly proportional to external Na+ up to 100 mol m?3 NaCl. Na+ influx involved two components: a Ca2+-insensitive influx which allowed the passage of Na+ independently of external Ca2+; and a Ca2+-inhibitable mechanism where Na+ influx was inversely proportional to external Ca2+. The Ca2+-inhibitable Na+ influx was similar to the Ca2+-inhibitable K+ influx. Mg2+ and Ba2+ were able to substitute for Ca2+ in partially inhibiting Na+ influx in the absence of external Ca2+. The effect of Ca2+ appears specific to Na+ and K+ influx since the effects of a Ca2+-free solution on the influx of some other cations, anions and neutral compounds is small. It is suggested that Na+ influx via the Ca2+-inhibitable mechanism represents Na+ leakage through K+ channels and that cell death at high salinity occurs due to a cytotoxic Na+ influx via this mechanism.  相似文献   

16.
Salt Tolerance in Aquatic Macrophytes: Ionic Relation and Interaction   总被引:1,自引:0,他引:1  
Effects of seawater salinity (SWS) and pure NaCl on the intracellular contents of Na+, K+, Mg2+, Ca2+, chlorophylls (Chl) and carotenoids (Car) were studied in three submerged aquatic macrophytes, Hydrilla verticillata, Najas indica and Najas gramenia, which differed in their tolerance to salinity. NaCl resulted in significant increase in Chl/Car ratio in the salt-sensitive H. verticillata and moderately salt-tolerant N. indica, but not in the salt-tolerant N. gramenia. SWS treatment did not result in any significant change in the ratio. The intracellular content of Na+ increased significantly in all the test plants upon exposure to both NaCl and SWS. The content of K+ decreased significantly in these plants upon salinity treatment, except in N. gramenia. The contents of Ca2+ and Mg2+ decreased significantly upon NaCl treatment and remained unchanged or increased upon SWS treatment. No relationship between salt tolerance and K+/Na+ ratio was observed. The maintenance of a minimal level of K+ was observed to be the most probable requirement of salt tolerance in aquatic macrophytes.  相似文献   

17.
The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte Suaeda salsa to salinity was investigated during germination and early seedling growth. Black and brown seeds were treated with chloroform for 1 min before the extract was used to analyze waxes and the seeds to investigate the protective role of the seed coat under saline conditions. Waxes in black seed coats were more abundant than those in brown seed coats. Salinity (500 mM NaCl) increased the concentration of Na+ and decreased the concentration of K+ in both black and brown seeds regardless of chloroform treatment. Chloroform treatment alone (in the absence of NaCl) had no effect on the concentration of Na+ or K+ in black or brown seeds and in the presence of 500 mM NaCl had no effect on the concentration of Na+ or K+ in brown seeds. However, chloroform treatment increased Na+ and decreased K+ in black seeds with 500 mM NaCl. A change of MDA (malondialdehyde) concentration in black and brown seeds treated with or without chloroform was similar to the change of Na+ concentration. High salinity (1500 mM NaCl) pretreatment for 40 days had a less adverse effect on germination of black seeds compared with brown seeds after they were transferred to fresh water regardless of chloroform treatment. Similar results were found for seedling emergence. In conclusion, a black seed coat may be more protective than a brown seed coat, probably by shielding the embryo from ion toxicity, because of its higher content of waxes. Thus black seeds can better maintain seed viability than brown seeds for extended periods under hypersaline conditions.  相似文献   

18.
The inward‐rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+‐uptake‐defective phenotype of yeast strain CY162, suppressed the salt‐sensitive phenotype of yeast strain G19, and complemented the low‐K+‐sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward‐rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1‐silenced plants exhibited stunted growth compared to wild‐type Z. xanthoxylum. Further experiments showed that ZxAKT1‐silenced plants exhibited a significant decline in net uptake of K+ and Na+, resulting in decreased concentrations of K+ and Na+, as compared to wild‐type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild‐type, the expression levels of genes encoding several transporters/channels related to K+/Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1‐silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.  相似文献   

19.
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor‐regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em) measurements. Turgor recovery was inhibited by Gd3+, tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl‐induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na+ but not K+ and Cl? in the incubation media. Na+ uptake was strongly decreased by amiloride and changes in net Na+ and H+ fluxes were oppositely directed. This suggests active uptake of Na+ in V. erythrospora mediated by an antiport Na+/H+ system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K+ efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.  相似文献   

20.
Summary The influence of K+ ions on the net Na+ fluxes in cells of excised barley roots (Hordeum distichon L.) and roots of whole barley plants was investigated. The fluxes were determined by flame photometry in the external solution. In both cases a transient net Na+ efflux against the external Na+ concentration was observed upon addition of K+. The results stress the effectiveness of the K+-dependent Na+ efflux mechanism residing at the plasmalemma, and its involvement in K–Na-selectivity in whole barley plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号