首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Phytochemistry》1987,26(2):509-510
2′-(E)-O-p-Coumaroyl- and 2′-(E)-O-feruloylgalactaric acids, hitherto unknown in nature, have been isolated and identified from orange peel.  相似文献   

2.
Abstract

The four (2′S)-[2′-2H]-2′-deoxynucleosides (>90 atom % 2H), were synthesized from the corresponding ribonucleosides involving six steps of reactions, i.e., oxidation of their 2′-hydroxyl group, stereoselective reductive deuteration of the resulting 2′-ketonucleoside intermediates with NaB2H4 in EtOH-H2O or EtOH, triflation, bromination with LiBr, highly stereoselective Bu3SnH-Et3B reduction of the resulting bromide, and, finally, unmasking.  相似文献   

3.
Abstract

(E)-5-(2-lodovinyl)-2′-fluoro-3′-0-(1-methyl-1,4-dihydropyridyl-3-carbonyl)-2′-deoxyuridine (11) was synthesized for future evaluation as a lipophilic, brain-selective, pyrimidine phosphorylase-resistant, antiviral agent for the treatment of Herpes simplex encephalitis (HSE). Treatment of (E)-5-(2-iodovinyl)-2′-fluoro-2′-deoxyuridine (6) with TBDMSCI in the presence of imidazole in DMF yielded the protected 5′-O-t-butyldimethylsilyl derivative (7). Subsequent reaction with nicotinoyl chloride hydrochloride in pyridine afforded (E)-5-(-2-iodovinyl)-2′-fluoro-3′-O-(3-pyridylcarbonyl)-5′-O-t-butyldimethylsily-2′-deoxyuridine (8). Deprotection of the silyl ether moiety of 8 with n-Bu4N+F? and quaternization of the resulting 3′-O-(3-pyridylcarbonyl) derivative 9 using iodomethane afforded the corresponding 1-methylpyridinium salt 10. The latter was reduced with sodium dithionite to yield (E)-5-(2-iodovinyl)-2′-fluoro-3′-O-(1-methyl-1,4-dihydropyridyl-3-carbonyl)-2′-deoxyuridine (11).  相似文献   

4.
Summary The title compounds were prepared by an enzymatic transdeoxyribosylation from 2 dGuo or 2 dThd to the respective heterocyclic bases, 5-ethyluracil and (E)-5-(2-bromovinyl)uracil, using the whole bacterial cells ofEscherichia coli as a biocatalyst.  相似文献   

5.
Abstract

A synthetic method for (2′S)-2′-C-alkyl-2′-deoxyuridines (9) has been described. Catalytic hydrogenation of 1-[2-C-alkynyl-2-O-methoxalyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]uracils (5) gave 1-[2-C-(2-alkyl)-2-O-methoxalyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]uracils (4) as a major product, which were then subjected to the radical deoxygenation, affording (2′S)-2′-alkyl-2′-deoxy-3′,5′-O-TIPDS-uridines (7) along with a small amount of their 2′R epimers.

  相似文献   

6.
The effect of tripropyltin chloride (TPT) on transport systems in E. coli was investigated. The inhibition on uptakes of 14C-l-leucine, l-proline, adenine and methyl-(α-d-gluco)pyrano-side (α-methylglucoside) by TPT was examined. The active uptake of l-leucine which utilized ATP molecule as an energy source was 100% inhibited at the concentration of 10 µg/ml TPT. On the other hand, the uptake of l-proline which was generated by an “energied” membrane state of the cells was inhibited only 40% at the same concentration of TPT. α-Methylglucoside uptake was scarcely inhibited. Adenine uptake was intensely inhibited at 20 µg/ml TPT. The effect of the delayed addition of TPT on transport systems was also examined. l-Leucine incorporated into cells was completely released from cells by TPT. Leucine binding protein (LBP) was prepared from E. coli cells and the effect of TPT on LBP activity was examined. TPT scarcely inhibited LBP activity.  相似文献   

7.
The cerebrosides were first isolated by Thudicum in 1874 and the structures were established by Carteret al. in 1950 (for review, see [2]). In 1961 Shapiro and Flowers [3] reported the first total synthesis of a cerebroside1 (Fig. 1) which was identified with the natural sample, only through comparison of their i.r. data. In order to confirm the absolute configuration at C-2 of natural cerebroside1, we describe here an unambiguous synthesis of two stereoisomeric cerebrosides1 and2, and found that the1H-NMR spectra of the synthetic1 (Fig. 2) was completely identical with that of the natural cerebroside reported recently by Dabrowskiet al. [4].In planning the synthetic route, the target structures1 and2 were disconnected at the dotted lines to give three key synthetic intermediates3, 4 and5 or6 (Fig. 1).Abbreviations Bu butyl - Ph phenyl - t-BuPh2SiCl t-butyldiphenylsilyl chloride - MTPA -methoxy--trifluoromethylphenylacetic acid - THF tetrahydrofuran Part 36 in the series Synthetic Studies on Cell-surface Glycans, for part 35, see [1]  相似文献   

8.
《Carbohydrate research》1987,162(2):237-246
Total syntheses of both (2S, 3R, 4E)-1-O-β-d-galactopyranosyl-N-(2′R)-2′-hydroxytetracosanoylsphingenine 23 and the (2′S) stereoisomer were performed in an unambiguous way by employing either (2S, 3R, 4E)-N-(2′R)-2′-(tert-butyl-diphenylsilyloxy)tetracosanoylsphingenine or its (2′S) stereoisomer as the key glycosyl acceptors. The synthetic cerebroside 23 was shown to be identical with the natural product through comparison of their 400-MHz, 1H-n.m.r. spectra, thus providing synthetic evidence for the 2′R configuration of the natural cerebroside.  相似文献   

9.
Abstract

2′-C-Cyanomethyl-2′-deoxy-arabinosylcytosine 3 and 2′-C-azidomethyl-2′-deoxy-arabinosylcytosine 4 were synthesized from uridine. The antineoplastic activities of these compounds were evaluated.  相似文献   

10.
11.
12.
Abstract

The performance of 2′-(2-chlorobenzoyl) protected ribonucleoside H-phosphonates in the synthesis of oligoribonucleotides has been studied.  相似文献   

13.
Abstract

Resistant variants were selected in vitro against two novel nucleoside analogues, (+) dOTC and (-) dOTFC using the HIV-1 molecular clone HXB2D. The variants obtained displayed 6.5-fold and 10-fold resistance to these compounds, respectively. Cloning and sequencing of the RT genes of the selected viruses identified two mutations, M184I for (+) dOTC and M184V for (-) dOTFC. Results with mutated recombinant clones of HXB2D confirmed the importance of these mutations in MT-4 cells. The resistance profiles of clinical samples with wild-type or 3TC-resistant phenotypes were also studied; low to moderate levels of cross-resistance were observed against the novel compounds.  相似文献   

14.
15.
Abstract

(E)-3′,5′-diamino-5-(2-bromovinyl)-2′,3′,5′-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. In contrast with BVDU, compound 5 did not show activity against herpes simplex virus or varicella-zoster virus.  相似文献   

16.
This article describes the synthesis of (3 ′S) and (3 ′R)-3 ′-amino-3 ′-deoxy pyranonucleosides and their precursors (3 ′S) and (3 ′R)-3 ′-azido-3 ′-deoxy pyranonucleosides. Azidation of 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-allofuranose followed by hydrolysis and subsequent acetylation afforded 3-azido-3-deoxy-1,2,4,6-tetra-O-acetyl-D-glucopyranose, which upon coupling with the proper silylated bases, deacetylation, and catalytic hydrogenation, obtained the target 3 ′-amino-3 ′-deoxy-β-D-glucopyranonucleosides. The desired 1-(3 ′-amino-3 ′-deoxy-β-D-allopyranosyl)5-fluorouracil was readily prepared from the suitable imidazylate sugar after azidation followed by a protection/deprotection sequence and reduction of the unprotected azido precursor. No antiviral activity was observed for the novel nucleosides. Moderate cytostatic activity was recorded for the 5-fluorouracil derivatives.  相似文献   

17.
Abstract

The 2-amino derivatives of 5-ethyl-2′-deoxyuridine (EDU) and (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) have been synthesized and evaluated for anti-herpesvirus activity. They were at least 1000-fold less effective against herpes simplex virus replication than the parent compounds EDU and BVDU. The 5′-triphosphates of the 2-amino substituted EDU, BVDU and thymidine derivatives were also synthesized and examined on their substrate/inhibitor properties against different DNA polymerases. None of the compounds proved markedly inhibitory to HSV-1 DNA polymerase or cellular DNA polymerase a. Nor were they incorporated into the growing DNA chain.  相似文献   

18.
ABSTRACT

The synthesis of 2,2′-bipyridinyl-2′-deoxyuridine metal-chelator nucleosides (Bipy-dU) with either ethynyl or ethylenyl linkers was now been accomplished. These new nucleosides will permit the construction of a number of corresponding metallo-DNA conjugates where many types of metals can be complexed to the 2,2′-bipyridinyl chelator group and the resulting metallo-dU conjugates incorporated into DNA oligonucleotides. Additionally this paper also reports the synthesis of a di-N-alkylated bipyridinediiumyl-2′-deoxyuridine nucleoside (Bipy2+-dU) with an ethylenyl linker. The Bipy2+-dU nucleoside was found to decompose under basic conditions precluding its use in standard automated DNA-synthesis by the phosphoramidite method. No such restrictions apply to the two Bipy-dU nucleosides reported here for use as metal chelators.  相似文献   

19.
Abstract

2-(4-Nitrophenylethyl) methylenebis(phosphonate) (1) has been prepared by reaction of 2-(4-nitrophenyl)ethyl alcohol with methylenebis(phosphonyl) tetrachloride. Compound 1 was treated with diisopropylcarbodiimide (DIC) to give bicyclic intermediate 2, which in reaction with suitably protected 2′-deoxynucleosides 3 gave P1,P2-disubstituted methylenebis(phosphonate)s 4. Removal of the nitrophenylethyl group by β-elimination with DBU afforded the corresponding 2′-deoxynucleoside 5′-methylenebis(phosphonate) analogues 5.

  相似文献   

20.
Abstract

Reaction of 1-[2,5(and 3,5)-di-O-trityl-β-D-erythro-pentofuran-3 (and 2)-ulosyl]uracil derivatives 5 and 6 with (chloromethyl)triphenylphosphorane resulted in the stereoselective formation of (E)-3′- and (Z)-2′-chloromethylene derivatives 7 (69%) and 8 (53%), respectively, deprotection of which gave 9 and 10. Transformation of the uracil nucleoside 7 into cytosine one followed by deprotection yielded 12. The latter was converted into the arabinoside 14. The fully deprotected chloromethylene nucleosides were tested for their activity against HIV-1 and HIV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号