首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Water-soluble phospholipase B was purified to homogeneity from Torulaspora delbrueckii cell washings. The washings were concentrated by ultrafiltration, and then a fraction with phospholipase B activity was precipitated with ammonium sulfate, and purified by sequential column chromatographies on Octyl-Sepharose CL-4B, DEAE-Sephacel, and Sepharose 6B. The molecular weight of the enzyme was estimated to be 170,000~200,000 by SDS-polyacrylamide gel electrophoresis and by gel filtration with a Sephadex G-200 column. The isoelectric point of the enzyme was 4.0. The purified enzyme had two pH optima at pH 2.5 and pH 7.5. The activity at acidic pH was greatly stimulated by the divalent metal ions tested, but the activity at alkaline pH was stimulated mainly by Ca2+ and Fe2+. The purified enzyme had both lysophospholipase activity and phospholipase B activity in a ratio of 37:1 at acidic pH and 73:1 at alkaline pH. The amino acid composition of the enzyme was characterized by high contents of Asp, Ser, Leu, and Gly.  相似文献   

2.
Invertase from a strain of Rhodotorula glutinis   总被引:1,自引:0,他引:1  
An invertase (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) from Rhodotorula glutinis was purified by ammonium sulfate fractionation, gel filtration and anion exchange chromatography. Invertase molecular weight was estimated to be 100 kDa by analytical gel filtration and 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Molecular mass determinations indicated that the native enzyme exists as a homodimer. It is a glycoprotein that contains 19% carbohydrate. The enzyme attacks beta-D-fructofuranoside (raffinose, stachyose and sucrose) from the fructose end. It has a K(m) of 0.227 M and a V(max) of 0.096 micromol/min with sucrose as a substrate. Invertase activity is stable between pH 2.6 and 5.5 for 30 min, maximum activity being observed at pH 4.5. The activation energy was 6520 cal/mol. The enzyme is stable between 20 and 60 degrees C. Mg(2+) and Ca(2+) ions stimulated invertase activity 3-fold, while Fe(2+), K(+), Co(2+), Na(+) and Cu(2+) increased activity about 2-fold. The transfructosylation reaction could not be observed. This enzyme is of particular interest since it appears to have a high hydrolytic activity in 1 M sucrose solution. This fact would make the enzymatic hydrolysis process economically efficient for syrup production using by-products with high salt and sugar contents such as sugar cane molasses.  相似文献   

3.
1. Phospholipase C[EC 3.1.4.3] was purified from the culture filtrate of Clostridium perfringens by successive chromatographies on CM-Sephadex, DEAE-Sephadex, and Sephadex G-100. During the purification it was noted that, beside the monomer form of the enzyme which was purified, a part of the enzyme existed in active polymerized forms. 2. The purified preparation gave a single band on polyacrylamide gel electrophoresis and gave a single precipitin line in immunodiffusion with the National Standard gas gangrene (C. perfringens) antitoxin, indicating the homogeneity of the preparation. 3. The specific lecithin-hydrolyzing activity of the purified preparation was comparable to that of a preparation obtained by affinity chromatography, which had the highest specific activity previously reported. 4. The molecular weight of the purified enzyme was estimated to be 43,000 by SDS-polyacryl-amide gel electrophoresis, although the same preparation gave a molecular weight of 31,000 as determined by gel filtration on Sephadex G-150. From this and the above finding that a part of the enzyme exists in active polymerized forms, the discrepancy among reported values for the molecular weight of C. perfringens phospholipase C can be accounted for. 5. For maximum hydrolytic activity toward lecithin, the enzyme required sodium deoxycholate (SDC) and Ca2+ ions. In the presence of 6 mM Ca2+, the optimal molar ratio of SDC to lecithin for maximal hydrolytic activity was about 0.5 for dipalmitoyl lecithin and about 1.0 for egg lecithin. The effects of various divalent cations on the enzymatic hydrolysis were also investigated. 6. The effects of sodium deoxycholate and Ca2+ ions on the enzymatic hydrolysis are discussed, based on their possible roles in mixed micelle formation.  相似文献   

4.
Summary Human erythrocyte Ca2+-translocating ATPase was solubilized from calmodulin-depleted membranes using the detergent Triton X-100, and subsequently purified by calmodulin-affinity chromatography. The purified enzyme was reconstituted in artificial phospholipid vesicles using a cholate-dialysis method and various phospholipids. The reconstituted enzyme was able to translocate Ca2+ inside the vesicles, both in the absence and in the presence of the Ca2+-chelating agent, oxalate, inside the vesicles. The tightness of coupling between ATP hydrolysis and cation translocation was investigated by the use of different ionophoretic compounds. The efficiency of Ca2+ translocation was measured by the ability of the ionophores to stimulate ATP hydrolytic activity of the reconstituted enzyme. It was found that the maximum stimulation of the ATP hydrolytic activity was induced by the electroneutral Ca2+/2H+ ionophore A23187 (9 to 10-fold). A Ca2+ ionophore unable to translocate H+, CYCLEX-2E, was less efficient in stimulating the activity of the reconstituted enzyme (two- to threefold). However, the combined addition of CYCLEX-2E plus protonophores further increased the ATP hydrolytic activity (around fourfold), whereas, the protonophores did not further stimulate ATP hydrolysis in the presence of A23187. Furthermore, in the absence of Ca2+ ionophore, the electroneutral K+(Na+)/H+ ionophoretic exchanger, nigericin, or the electroneutral Na+(K+)/H+ ionophoretic exchanger, monensin, stimulated the rate of ATP hydrolysis in the reconstituted enzyme two- or threefold, respectively. These results suggest that the Ca2+-ATPase not only translocates Ca2+ but also H+ in the opposite direction.  相似文献   

5.
P Nyrén  B F Nore  A Strid 《Biochemistry》1991,30(11):2883-2887
A new method has been developed for the isolation of the proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive PPi synthase (H(+)-PPi synthase) from chromatophores of Rhodospirillum rubrum. The H(+)-PPi synthase was purified by extraction of chromatophores with a mixture of nonanoyl-N-methylglucamide and cholate, by fractionation with poly(ethylene glycol) 4000, hydroxyapatite chromatography, and affinity chromatography. The purified enzyme is homogeneous and has a specific activity of 20.4 mumol of PPi hydrolyzed min-1 mg-1 at pH 7.5 and 20 degrees C. The hydrolytic activity of the enzyme was stimulated by addition of phospholipids and Triton X-100. Of the lipids tested, cardiolipin proved to have the maximal activating effect. Reconstitution of the H(+)-PPi synthase by the freeze-thaw technique yielded an uncoupler-stimulated and N,N'-dicyclohexylcarbodiimide-sensitive PPi hydrolytic activity. The subunit composition of the purified H(+)-PPi synthase was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One band was obtained after silver staining with an apparent molecular weight of 56,000. The oligomeric structure of the H(+)-PPi synthase is discussed.  相似文献   

6.
1. A Suc-APA-MCA hydrolytic activity was significantly decreased in murine erythroleukemia cells during DMSO-induced differentiation, but not in DMSO-resistant cells. 2. The Suc-APA-MCA hydrolytic enzyme was purified by ion exchange, adsorption, gel filtration and affinity chromotographies. The results of the chromatographies showed that only one enzyme hydrolyzed Suc-APA-MCA in MEL cells. 3. This enzyme is more sensitive to hydrolysis by Suc-GPLGP-MCA than Suc-APA-MCA at slightly acidic pH, and its activity is stimulated by 2-mercaptoethanol. 4. A cysteine proteinase inhibitor did not affect the activity, but a specific inhibitor of prolyl endopeptidase, Z-thioprothiazolidine, completely inhibited it. These results suggest that the Suc-APA-MCA hydrolytic enzyme is identical to a prolyl endopeptidase.  相似文献   

7.
An enzyme hydrolyzing sphingomyelin was purified from extracts of solid cultures of Aspergillus saitoi 7041 by fractionation with isopropanol followed by successive column chromatographies on DEAE-Sepharose CL-6B, butyl-Toyopearl 650 M, and phenyl-Sepharose CL-4B. The preparation of purified enzyme was homogeneous and had an activity increased 81-fold over that of the isopropanol fraction. The yield was about 65%. The molecular weight was estimated to be 54,000 by sodium dodecyl sulfate-gel electrophoresis. The enzyme solution had a violet color and contained iron atoms. The enzyme catalyzed the hydrolysis of sphingomyelin to N-acylsphingosine and phosphorylcholine. The optimum pH for hydrolytic activity was around 3.5. The Km values for sphingomyelin and 2-hexadecanoylamino-4-nitrophenylphosphorylcholine were 0.11 and 0.33 mM, respectively. The enzyme also catalyzed the hydrolysis of other phospholipids; the order of its hydrolytic activity at a substrate concentration of 2.5 mM was phosphatidylcholine greater than or equal to sphingomyelin = phosphatidylethanolamine = lysophosphatidylethanolamine greater than phosphatidyl DL-glycerol = phosphatidyl L-serine greater than phosphatidylinositol. From these results, this enzyme appears to be a new type of phospholipase C(phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3).  相似文献   

8.
A phosphatase was purified through a combination of ion‐exchange and hydrophobic chromatography followed by native PAGE from Physarum plasmodia. Recently, we demonstrated that this phosphatase isoform has a hydrolytic activity towards the PMLC (phosphorylated light chain of Physarum myosin II) at pH 7.6. The apparent molecular mass of the purified enzyme was estimated at approximately 50 kDa by means of analytical gel filtration. The enzyme was purified 340‐fold to a final phosphatase activity of 400 pkat/mg of protein. Among the phosphorylated compounds tested for hydrolytic activity at pH 7.6, the enzyme showed no activity towards nucleotides. At pH 7.6, hydrolytic activity of the enzyme against PMLC was detected; at pH 5.0, however, no hydrolytic activity towards PMLC was observed. The K m of the enzyme for PMLC was 10 μM, and the V max was 1.17 nkat/mg of protein. Ca2+ (10 μM) inhibited the activity of the enzyme, and Mg2+ (8.5 μM) activated the dephosphorylation of PMLC. Mn2+ (1.6 μM) highly stimulated the enzyme's activity. Based on these results, we concluded that the enzyme is likely to be a phosphatase with hydrolytic activity towards PMLC.  相似文献   

9.
A Trichoderma harzianum isolate (1051), which was able to antagonize in field the phytopathogen Crinipellis perniciosa, the causal agent of witches' broom disease of cocoa, produces several hydrolytic enzymes. A chitinase, with molecular mass of about 37 kDA, which was secreted by the Trichoderma in the culture medium containing chitin, was partially purified by gel filtration followed by hydrophobic chromatography. The optimal pH and temperature for chitin hydrolysis by the partially purified enzyme were 4.0 and 37 °C, respectively. Chitobiose, laminarin, cellulosic substrates including aryl-glucosides, xylan, starch and -galactomannan were not hydrolysed by the enzyme. Remarkably, the partially purified enzyme drastically affected the cell wall of the phytopathogen C. perniciosa in vitro.  相似文献   

10.
A phospholipase C (PLC) activity that preferentially hydrolyses phosphatidylcholine to diacylglycerol and phosphorylcholine was found to be present in Tetrahymena pyriformis, strain W and most of its activity was recovered in the membrane fraction. This enzyme was extracted with 1% Triton X-100 from the membrane fraction and purified to apparent homogeneity by sequential chromatographies on Fast Q-Sepharose, hydroxyapatite HCA-100S, Mono Q and Superose 12 gel filtration columns. The purified enzyme had specific activity of 2083 nmol of diacylglycerol released/mg of protein/min for dipalmitoylphosphatidylcholine hydrolysis. Its apparent molecular mass was 128 kDa as determined by SDS-polyacrylamide gel electrophoresis and was 127 kDa by gel filtration chromatography, indicating that the enzyme is present in a monomeric form. The enzyme exhibited an optimum pH 7.0 and the apparent Km value was determined to be 166 μM for dipalmitoylphosphatidylcholine. A marked increase was observed in phosphatidylcholine hydrolytic activity in the presence of 0.05% (1.2 mM) deoxycholate. Ca2+ but not Mg2+ enhanced the activity at a concentration of 2 mM. This purified phospholipase C exhibited a preferential hydrolytic activity for phosphatidylcholine but much less activity was observed for phosphatidylinositol (~ 9%) and phosphatidylethanolamine (~ 2%).  相似文献   

11.
Poly(γ-glutamic acid) (PGA) hydrolase was purified from the culture filtrate of a filamentous fungus, Myrothecium sp. TM-4222 and its general properties, especially the mode of hydrolytic action on the γ-glutamyl bond of PGA, were investigated. The purified preparation demonstrated a homogeneous band on an acidic slab gel of pH 4.3 with polyacrylamide gel electrophoresis. The enzyme showed its maximum activity at 37°C and at pH 5.0, being stable up to 40°C. The molecular mass was estimated to be 68 kDa by gel filtration. The hydrolytic action of the enzyme was specific for PGA, but not for other γ-glutamyl peptides or amides. The enzyme converted 38% of the original PGA with an average molecular mass of 500 kDa to smaller peptides, and then depolymerized these fragments to a mixture of γ-oligopeptides which consisted of only L-glutamic acid. L-Glutamic acid monomer was negligible in the reaction mixture. The remaining 62% of PGA was resistant to the enzyme action, in which D-glutamic acid was mainly detected. This study demonstrated a novel endo-type specificity of hydrolysis on PGA by the enzyme.  相似文献   

12.
Phospholipases A1 and A2 catalyze the hydrolysis of acyl groups of phospholipids at C-1 and C-2, respectively. These phospholipases are important in phospholipid catabolism and the remodeling of the acyl groups of phospholipids. Phospholipase A from hamster heart cytosol was purified by a combination of ion-exchange and gel filtration chromatography. The purity of the enzyme was assessed by nondenaturing polyacrylamide gel electrophoresis, two-dimension polyacrylamide gel electrophoresis, and immunological studies. The purified enzyme exhibited both phospholipase A1 and A2 activities toward phosphatidylcholine and had the ability to hydrolyze the acyl groups of phosphatidylethanolamine. However, the enzyme was not active toward lysophosphatidylcholine, diacylglycerol, or triacylglycerol. By Sepharose 6B chromatography, the molecular weight of the purified enzyme was estimated to be 140,000. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was composed of identical Mr 14,000 subunits. At least six subunits in the native enzyme could be cross-linked by dimethyl suberimidate. Both phospholipase A1 and A2 activities showed similar pH profiles, exhibited no absolute requirements for divalent metallic cations, but displayed a high degree of specificity for the acyl groups of phosphatidylcholine at both C-1 and C-2. The Km of phospholipases A1 and A2 for 1-palmitoyl-2-arachidon-ylglycerophosphocholine was found to be identical (0.5 mM).  相似文献   

13.
One hundred fifty strains of actinomycetes were isolated from soils on plate cultures containing beet arabinan as the sole carbon source. About one-third of the culture fluids were found to have arabinosidase activity. A wild-type strain, Streptomyces sp. No. 17-1, was selected as the best producer of arabinosidase. The highest enzymatic activity was obtained in the culture fluid when the initial pH was adjusted to 9.0. An α-l-arabinofuranosidase was highly purified from the culture filtrate of No. 17-1 by combining column chromatography on DEAE-cellulose, gel filtration on Sephadex G-100, and isoelectric focusing. The molecular weight of the purified enzyme was estimated to be about 92, 000, and its isoelectric point was pH 4.4. The enzymatic activity was maximum at pH 6.0 and was completely inhibited by Hg2+. The apparent Km value of the enzyme for p-nitrophenyl-α-l-arabinofuranoside was determined to be 3.6 mM.  相似文献   

14.
A thermostable extracellular β-1,3-glucanase from Chaetomium thermophilum was purified to homogeneity by fractional ammonium sulfate precipitation, Pheny1-Sepharose hydrophobic interaction chromatography, ion exchange chromatography on DEAE-Sepharose and gel filtration on Sephacryl S-100. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 76.3 kDa. The enzyme exhibited optimum catalytic activity at pH 6.0 and 60 °C. It was thermostable at 50 °C, and retained 90% activity after 60 min at 60 °C. The half-life at 65 °C, 70 °C and 80 °C was 55 min, 21.5 min, and 5 min, respectively. The N-terminal amino acid sequence (8 residues) of the enzyme was HWLGDIPH. The HPLC analysis showed that the only enzymatic product formed from laminarin by the purified β-1,3-glucanase was glucose, indicating that the enzyme is an exo-β-1,3-glucanase (EC 3.2.1.58).  相似文献   

15.
Ingensin, a high-molecular-mass alkaline protease from rabbit reticulocyte   总被引:1,自引:0,他引:1  
A high-molecular-mass protease, ingensin, was purified to homogeneity from rabbit reticulocytes by DEAE-cellulose, HPLC gel filtration, and hydroxyapatite chromatographies. By these procedures, ingensin activity was separated from the activities of two other unique aminopeptidases, one of which is activated by ATP. Ingensin had the following properties: the optimum activity was seen around pH 9.0 and at 50 degrees C; addition of 0.04% SDS and 1 mg/ml linoleic acid resulted in 8- and 4-fold increases in peptide-hydrolyzing activity, respectively. The molecular mass was found to be 700,000 +/- 100,000 daltons on gel filtration, but SDS electrophoresis revealed that the enzyme is composed of several subunits with molecular weights of less than 35,000. The N-terminal-blocked tyrosine- and arginine-MCA derivatives, but not Arg-MCA, were hydrolyzed rapidly by ingensin. The approximate Km values for the reaction of ingensin with Suc-Leu-Leu-Val-Tyr-MCA and Z-Ala-Arg-Arg-MCA were 0.32 and 0.12 mM, respectively. The degradation of several proteins in the reticulocyte extract was stimulated by the addition of SDS and linoleic acid. The activator concentrations necessary for stimulation of the protein hydrolysis are similar to those of the purified reticulocyte ingensin for synthetic substrates. Ingensin did not associate with either right-side-out or inside-out red cell membranes. These results suggest that ingensin is a cytosolic fatty acid-stimulated protease, which is involved in the protein turnover in reticulocyte extracts.  相似文献   

16.
A cytoplasmic pyrophosphatase [E.C. 3.6.1.1.] was partially purified from Helicobacter pylori. The molecular mass was estimated to be 103 kDa by gel filtration. Results of SDS-PAGE suggested that the enzyme consists of six identical subunits of 19.1 kDa each. The enzyme specifically catalyzed the hydrolysis of pyrophosphate and was very sensitive to NaF, but not to sodium molybdate. The optimal pH for activity was 8.5. Mg2+ was required for maximal activity; Mn2+, Co2+, and Zn2+ poorly supported hydrolytic activity. The pyrophosphatase had an apparent K(m) for Mg-PP(i)2 hydrolysis of 90 microM, and a Vmax estimated at 24.0 micromol P(i) min(-1) mg(-1).  相似文献   

17.
An endoribonuclease has been purified nearly to homogeneity from rat liver microsomes, and its mode of action and general properties were studied. The enzyme had an apparent molecular weight of 58 000, as estimated by both gel filtration and SDS-polyacrylamide gel electrophoresis and produced oligonucleotides from poly(A), poly(U) and poly(C). No mononucleotide was obtained by the enzymatic hydrolysis of the above substrates. The enzyme made endonucleolytic cleavages which generated 5'-phosphate-terminated oligonucleotides. It was suggested that the existence of at least (Ado5'P)2 residues at both sides of the cleavage bond was necessary for the action of the endoribonuclease. Divalent cations (Mg2+ or Mn2+) were required for the enzymatic activity, while K+ inhibited the enzyme. Spermine stimulated the enzymatic activity in the presence of 1 mM Mg2+.  相似文献   

18.
Lysosomal acid lipase was purified to near homogeneity in a yield of 25-30% from secretions of human fibroblasts grown on microcarriers in spinner culture. Ammonium chloride was added to the serum-free medium to stimulate production of extracellular enzyme and minimize modifications, including proteolytic processing and destruction of the mannose 6-phosphate recognition marker, that have been associated with packaging and maturation of acid hydrolases in lysosomes. Chromatography of secretions by decyl-agarose, hydroxylapatite, phenylboronate-agarose, and gel filtration resulted in greater than 1500-fold purification of the lipase, representing a 10,000-fold increase above the specific activity of intracellular enzyme. The apparent molecular weight of approximately 49,000, estimated for the lipase by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, was similar to that determined for the native enzyme by gel filtration (Mr approximately 47,000). By contrast, a smaller molecular weight (Mr approximately 41,000) was estimated for the intracellular enzyme. The purified enzyme was susceptible to hydrolysis by endo-beta-N-acetylglucosaminidase H, which resulted in at least two new forms, reduced in apparent molecular weight by approximately 4,000-6,000. Treatment with the endoglycosidase did not alter the catalytic activity or heat stability of the acid lipase. However, the treated enzyme was no longer internalized by fibroblasts via the mannose 6-phosphate receptor and thereby had lost the capacity to correct cholesteryl ester accumulation in cultured lipase-deficient cells. Acid fatty acyl hydrolase activity for cholesteryl oleate, triolein, and methylumbelliferyl oleate co-purified. All three esters were hydrolyzed optimally at pH 4.0, but the pH profile was altered by addition of salts or albumin to the phospholipid-bile salt substrate mixtures. In a series of saturated fatty acyl esters of 4-methylumbelliferone, a derivative with an intermediate chain length (9 carbons) was the best substrate and was hydrolyzed at a rate comparable to that of the oleate ester at pH 4. The optimal pH for hydrolysis of the intermediate and shorter chain length esters was higher by about 2 pH units than that for the longer chain esters (pH approximately 4). The activity of the purified lipase was stimulated by several different proteins. The relationship of this effect to the possible requirement for a natural activator substance has not been determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
A phosphohydrolase from Enterobacter aerogenes which hydrolyzes phosphate mono- and diesters has been purified approximately 50-fold to apparent homoeneity and crystallized. The enzyme is produced when the bacteria utilize phosphate diesters as sole phosphorus source. From sedimentation equilibrium experiments the molecular weight of the native enzyme is 173,000; from sodium dodecyl sulfate polyacrylamide gel electrophoresis the subunit molecular weight is 29,000, indicating that the enzyme is hexameric. The hydrolytic activity of the enzyme using both mono- and diesters is maximal at pH 5; THE Km of the enzyme for bis-p-nitrophenyl phosphate is constant from pH 5 to 8.5 whereas that for p-nitrophenyl phosphate increases about 40-fold as the pH increases over the same range. The phosphodiesterase activity is not inhibited by chelating agents but is inhibited by several divalent metal ions. 31-P NMR spectroscopy was used to identify the hydrolysis products of glycoside cyclic phosphates. The enzyme-catalyzed hydrolysis of methyl beta-D-ribofuranoside cyclic 3:5-phosphate yields exclusively the 5-phosphate whereas that of adenosine 3:5-monophosphate yields a 4:1 mixture of 3- and 5- AMP.  相似文献   

20.
An endogenous, heat-stable and pronase-sensitive activator for enzymatic hydrolysis of glucosylceramide was detected in the crude lysosome-mitochondria fraction of human placenta. Its properties differ distinctly in several important respects from those of the previously described glucosylceramidase activator. The activator reported here had no effect on crude glucosylceramidase with either glucosylceramide or 4-methylumbelliferyl-beta-D-glucopyranoside as the substrate in the presence of either sodium taurocholate or phosphatidylserine. On the contrary, glucosylceramide hydrolysis by the enzyme partially purified through Octyl-Sepharose 4B chromatography was stimulated by this activator 6-9-fold in the presence of either sodium taurocholate or phosphatidylserine. The Km for glucosylceramide in the presence of the activator was 1/3 of that without the activator. In the crude enzyme fraction, the activator was present in a 16-fold excess over the minimum amount necessary for full activation of the enzyme. Hydrolysis of the fluorogenic substrate by the post-Octyl-Sepharose enzyme, however, was not stimulated by the activator. Similarly, hydrolysis of galactosylceramide by galactosylceramidase obtained from the same Octyl-Sepharose chromatography was not stimulated. Our observations are consistent with the idea that glucosylceramidase is saturated by, or perhaps tightly associated with, this activator in the placenta and that they are dissociated by the Octyl-Sepharose chromatography. In fact, the properties of the combined post-Octyl-Sepharose enzyme and activator closely mimic those of the crude enzyme without added activator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号