首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some strains of Pseudomonas was found capable of utilizing l-theanine or d-theanine as a sole nitrogen and carbon source. The cell-free extract catalyzes the hydrolysis of the amide group of the compounds and the hydrolase activity was influenced remarkably by the nitrogen source in the medium. l-Theanine and d-theanine were hydrolyzed to yield stoichiometrically l-glutamic acid and d-glutamic acid, respectively, and ethylamine, which were isolated from the reaction mixture and identified.

The theanine hydrolase of Pseudomonas aeruginosa was purified approximately 200-fold. It was shown that the activities of l-theanine hydrolase, d-theanine hydrolase and the heat-stable l-glutamine hydrolase and d-glutamine hydrolase are ascribed to a single enzyme, which may be regarded as a γ-glutamyltransferase from the point of view of the substrate specificity and the properties. This theanine hydrolase catalyzed the transfer of γ-glutamyl moiety of the substrates and glutathione to hydroxylamine. l-Glutamine and d-glutamine were hydrolyzed by the theanine hydrolase and also by the heat-labile enzyme of the same strain of Pseudomonas aeruginosa, whose properties resembled the common glutaminase.  相似文献   

2.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

3.
The nature of the active site of Chaetomium trilaterale β-xylosidase catalyzing the hydrolysis of β-d-glucopyranoside and β-d-xylopyranoside was investigated by kinetic methods. On experiments with mixed substrates, such as phenyl β-d-xylopyranoside and phenyl β-d-glucopyranoside, the kinetic features agreed very closely with those features theoretically predicted for a single active site of the same enzyme catalyzing the hydrolysis of these two kinds of substrates.

Both the β-glucosidase and β-xylosidase activities were strongly inhibited by glucono-1,5-lactone and nojirimycin (5-amino-5-deoxy-d-glucopyranose). β-Xylosidase activity was inhibited non-competitively by the two inhibitors, but β-glucosidase activity was competitive. Methyl β-d-xylopyranoside, methyl β-d-glucopyranoside, 1-thiophenyl β-d-xylopyranoside, and 1-thiophenyl β-d-glucopyranoside poorly inhibited both activities. Methyl β-d-xylopyranoside inhibited the β-xylosidase activity competitively but the β-glucosidase activity was non-competitive, whereas methyl β-d-glucopyranoside inhibited the β-xylosidase activity non-competitively but the β-glucosidase activity was competitive. 1-Thiophenyl β-d-xylopyranoside and 1-thiophenyl β-d-glucopyranoside behaved as competitive inhibitors.

From these results, it was concluded that the β-xylosidase and β-glucosidase activities reside in one catalytic site, and this suggests that there might be two kinetically distinct binding sites in the active center of the same enzyme.  相似文献   

4.
The α-d-galactosidases of six Streptomyces strains were examined on their inducer susceptibility, substate specificity, and inhibitor susceptibility. In all strains examined, α-d-galactosidase was induced by d-galactose, but neither by d-fucose nor by l-arabinose. α-d-Fucosidase activity was always induced accompanying with α-d-galactosedase activity. β-l-Arabinosidase activity, however, was never observed. These α-d-galactosidases were purified to electrophoretically pure degree by successive ammonium sulfate and ethanol precipitation, and ion exchange and gel filtration chromatography. The purified preparations from six strains were different from each other in their chromatographic behaviors and in some physical properties, but they all showed strong α-d-fucosidase activity as well. The α-d-galactosidase activities were strongly inhibited by d-galactose and l-arabinose, but scarcely by d-fucose. On the other hand, their α-d-fucosidase activities were inhibited by d-fucose as well as by d-galactose and l-arabinose.  相似文献   

5.
The growing recognition of the roles of carbohydrates in fundamental biological processes and their potential application as functional foods and new therapeutics have generated a need for larger amounts of different carbohydrate structures. Leloir glycosyltransferases catalyze the synthesis of complex oligosaccharides. However they are difficult or expensive to obtain, and require expensive nucleotide activated sugars. In contrast non-Leloir pathway enzymes use sucrose, which is known to be a high energy donor of d-glucose for glucosyltransferases like dextransucrase, or a donor of d-fructose for fructosyltransferases like inulin- and levansucrases for the synthesis of polysaccharides. Here we present the synthesis and kinetic studies of oligosaccharides using non-Leloir glycosyltransferases and sucrose analogues as new substrates, like β-d-fructofuranosyl-α-d-galactopyranoside (Gal-Fru) by a fructosyltransferase (FTF) from B. subtilis NCIMB 11871. The sucrose analogues carry a high binding energy in the glycosidic bond similar to that of sucrose. Thus, β-d-Fructofuranosyl-α-d-galactopyranoside (Gal-Fru) and β-d-Fructofuranosyl-α-d-fucopyranoside (d-Fuc-Fru) have been shown to be substrates for fructosyltransferases, which produce oligo- or polysaccharides, also in the presence of acceptors.  相似文献   

6.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

7.
Methylation analysis of five fractions of the dextran elaborated by Leuconostoc mesenteroides NRRL B-1299 has shown that each fraction was a highly branched dextran with the branches being joined mainly through C-2. Detection of a small amount of 4-O-mono-methyl-d-glucose has suggested that parts of the d-glucose residues were doubly branched at both C-2 and C-3. Detection of a larger amount of 2,4,6-tri-O-methyl-d-glucose in the hydrolyzates of the methylated products of the borate insoluble fractions has shown a greater percentage of linear α-1,3-linked d-glucose residues in these fractions. It is suggested that the solubility of the dextran is closely related to the content of linear α-1,3-linked d-glucose residues.  相似文献   

8.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

9.
We detected carboxymethyl cellulase activity in a crude extract of Acetobacter xylinum KU-1. The enzyme activity was detected when glycerol, d-fructose, d-mannitol, d-glucose, d-arabitol, d-sorbitol, or carboxymethyl cellulose was used as a carbon source. The optimum pH was found to be 4.0, while the optimum temperature was 50°C. The enzyme activity was inhibited characteristically by the addition of Hg2+.  相似文献   

10.
The regulation of enzyme synthesis has changed in Bacillus subtilis pleiotropic mutant lacking transketolase (tkt). The tkt mutant is hypersensitive to d-glucose repression of the synthesis of d-mannitol catabolic enzymes, such as d-mannitol-1-phosphate dehydrogenase and d-mannitol transport system. d-Gluconate, d-xylose and l-arabinose are also effectors for repression in the tkt mutant. In contrast, the synthesis of sorbitol catabolic enzymes, such as sorbitol permease and sorbitol dehydrogenase, are almost insensitive to d-glucose repression. These changes in the regulation of enzyme synthesis seem to be related to some defect in the cell surface structure of the tkt mutant by which other pleiotropic properties are also generated.  相似文献   

11.
The β-d-glucosidase (EC. 3.2.1.21) activity of Bifidobacterium breve 203 was increased by acclimation with cellobiose, and the enzyme was purified to homogeneity from cell-free extracts of an acclimatized strain of B. breve clb, by ammonium sulfate fractionation and column chromatographies of anion-exchange, gel filtration, Gigapaite, and hydrophobic interaction. This enzyme had not only β- d-glucosidase activity but also β- d-fucosidase activity, which is specific to Bifidobacteria in intestinal flora. The molecular weight of the purified enzyme was estimated to be 47,000–48,000 and the enzyme was assumed to be a monomeric protein. The optimum pH and temperature of the enzyme were around 5.5 and 45°C, respectively. The enzyme was stable up to 40°C and between pH 5 and 8. The isoelectric point of the enzyme was 4.3 and the Km values for p-nitrophenyl-β-d-glucoside and p-nitrophenyl-β-d-fucoside were 1.3mm and 0.7 mm, respectively. This enzyme had also transferase activity for the β-d-fucosyl group but not for the β-d-glucosyl group. The N-terminal amino acid sequence of this enzyme was similar to those of β-d-glucosidase from other bacteria, actinomycetes, and plants.  相似文献   

12.
The chemical structure of cell wall β-d-glucans as well as the activities of lytic enzymes such as β-1,3-d-glucanase and β-1,6-d-glucanase changed during the growth of Neurospora crassa.

A dramatic change in the cell wall β-d-glucan structure was observed between cells of the middle logarithmic phase and ones of the late logarithmic phase. The ratio of 1,3-linked glucose residues to non reducing terminal glucose residues decreased from 85 to 55 and the ratio of gentiobiose as a hydrolysis product with exo-β-1,3-d-glucanase increased significantly between the two phases.

Two prominent peaks of β-1,3-d-glucanase as well as the β-1,6-d-glucanase activities appeared in the culture filtrate at different growth stages, the early logarithmic phase and the stationary phase. In the cell wall, β-d-glucosidase activity instead of the β-l,6-d-glucanase and β-1,3-d-glucanase activities was observed in the late logarithmic phase.  相似文献   

13.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

14.
d-Aminoacylase was found to be produced not only by S. olivaceus 62–3 isolated from soil but also by three strains of type culture of Streptomyces species. All four of these strains produced d-aminoacylase intracellularly only when an inducer was added to the culture medium. d-Amino acids or N-acetyl-d-amino acids were effective as inducers.

As S. tuirus showed the highest d-aminoacylase activity, the enzyme extract of this strain was subjected to further investigation to determine the optimal conditions for optical resolution of N-acetyl-dl-phenylglycine. Almost all contaminating l-aminoacylase in the enzyme extract could be eliminated by DEAE-Sephadex adsorption. d-Phenylglycine of 99.9% optical purity was obtained after complete hydrolysis of d-isomer with the use of d-aminoacylase solution.  相似文献   

15.
Cells of Bacillus coagulans, strain HN-68 grown on the medium containing d-glucose, did not show any measurable d-glucose-isomerizing activity. However, when d-glucose-grown cells were shaked for a few hours in an induction medium containing d-xylose, induced formation of d-glucose-isomerizing enzyme occurred in the cells. Cell weight and number of survival cells showed only an increase of 30 and 10%, respectively during 6 hr induction.

The induced formation of d-glucose-isomerizing enzyme required organic nitrogen such as polypeptone in addition to d-xylose. Development of the maximum activity was observed when the concentration of d-xylose and polypeptone were 2 and 3%, respectively. Initial velocity of induced formation of d-glucose-isomerizing enzyme increased in proportion to the decrease of initial pH values of the induction medium, i.e., at 2 hr induction, activity at pH 4.5 was 5-fold increase than that at pH 8.0.

Induced formation of d-glucose-isomerizing enzyme was inhibited strongly by addition of chloramphenicol, tetracycline, streptomycin, cyanide or azide, and was promoted by threonine plus glycine.  相似文献   

16.
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.  相似文献   

17.
A thermophilic spore-forming strain HN-68, only d-xylose grown cells of which have an activity of d-glucose isomerization, was isolated from soil, and identified to be similar to Bacillus coagulans Hammer. The conditions necessary for maximal production of the glucose isomerizing activity by the cells from shaken cultures in d-xylose media were studied. Much higher activities were observed with the cells grown from 14 ~ 16 hours at 40°C on d-xylose medium containing yeast extract, ammonium chloride, manganese sulfate and calcium carbonate. d-Glucose isomerizing activity was also developed inductively by exposing the washed cells grown on d-glucose to d-xylose within one hour. With the use of living cells as an enzyme source, the addition of both cobaltous ion and toluene in reaction system remarkably enhanced the reaction rate of d-glucose isomerization.  相似文献   

18.
Some enzymatic properties of Malbranchea β-xylosidase were investigated. The β- xylosidase activity was inhibited by Hg2+, Zn2+, Cu2+, N-bromosuccinimide, p-chloromercuribenzoate and sodium laurylsulfate, while this activity was activated by Ca2+. The enzyme released xylose as the end product even from 10% xylobiose solution without forming any xylooligosaccharides. The enzyme well acted on aryl-β-d-xylosides, but showed no activity on alkyl-β-d-xylosides, and it was practically free from glucosidase activity. The Km and Vmax values of this enzyme for xylobiose were calculated to be 2.86 × 10?8 m and 34.5 μmoles/mg/min, respectively, and these values determined for phenyl-β-d-xyloside were 3.01 × 10?8 m and 16.2 μmoles/mg/min, respectively.  相似文献   

19.
Oxidation of methyl trimethyl glucopyranosides which were obtained by methanolysis of permethylated cellulose, laminarin, and dextran, was performed with dimethyl sulfoxide (DMSO)-phosphorus pentoxide to afford the corresponding ulose derivatives, methyl 2,3,6-tri-O-methyl-d-xylo-hexopyranosid-4-ulose, methyl 2,4,6-tri-O-methyl-d-ribo-hexopyranosid-3-ulose, and methyl 2,3,4-tri-O-methyl-d-gluco-hexodialdo-l,5-pyranoside, respectively, in good or moderate yields. As a new type of derivatives for the linkage analysis of polysaccharides the chromatographic and spectrometric properties of 2,4-dinitrophenylhydrazone of the ulose derivatives were investigated.  相似文献   

20.
During the investigations on riboflavin glycoside formation by Aspergillus, Mucor, Penicillium and Rhizopus, a remarkable production of 5′-d-riboflavin-α-d-glucopyranoside was observed in several strains belonging to the genus Mucor when grown on a, medium containing maltose and riboflavin. Several conditions on 5′-d-riboflavin-α-d-glucopyranoside formation were also investigated with washed mycellium of M. javanicus. Maltosyl compounds such as maltose, dextrin, amylose and soluble starch were the effective glucosyl donor, whereas glucose, fructose, sucrose, lactose and dextran were inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号