首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The role of exposed tyrosine side-chains in enzyme-catalysed reactions has been studied for porcine-pancreatic alpha-amylase, sweet-potato beta-amylase, and Aspergillus niger glucamylase using N-acetylimidazole as the specific protein reagent. The changes in activity binding affinity (Δk?1/k+1), and kinetic parameters (Km,k2) due to acetylation of the phenolic hydroxyl groups have been determined. Acetylation of each enzyme occurred by an “apparent” first-order reaction with a rate constant of 0.72–1.4 x 10?1min?1. Acetylation increased the apparent Km (soluble starch as the substrate) for each enzyme (appreciably for alpha-amylase and glucamylase), whereas k2 remained unchanged. Similarly, for each enzyme, the binding affinity for immobilised cyclohexa-amylose decreased appreciably, whereas the catalytic activity was reduced only to a small degree (and remained unchanged for beta-amylase). It is concluded that the tyrosine groups located in the active centre of each enzyme have a substrate-binding function.  相似文献   

3.
The title compound is a cyclic oligosaccharide having six glucopyranose residues linked alternatively by -(14) and -(16) glycosidic linkages. Like cyclodextrin analogues it is expected to exhibit an internal cavity and to form inclusion complexes with other species. In order to investigate its conformational preferences, an extensive conformational search was carried out using a combination of Metropolis Monte-Carlo (MMC) procedure in the glycosidic torsion angle space and molecular mechanics procedures. To this end a specific program (METROCYCLIX) was developed. To reduce the MMC search, conformational maps of parent disaccharides were considered as starting entries. Fully minimized conformations were gathered into families using a clustering technique based on RMS fitting over the glycosidic torsion angle values. A wide range of local energy minima were identified in spite of ring closure conditions that constrained the structure of the oligosaccharide. Low energy conformers were stabilized by intramolecular interactions between distant residues. From the Bolzmann population of the best structures derived from the clustering results, various average properties were calculated and compared with experimental data obtained by high resolution NMR. Interpretation of these experimental values (heteronuclear coupling constants, rotating frame nuclear Overhauser effects, relaxation times) relies on the use of Karplus like equations (coupling constants) and analysis of the full relaxation rate matrix treatment (ROE). The quality of the molecular modelling strategy used is assessed by the agreement obtained between calculated and measured observables.  相似文献   

4.
Two major forms of branching enzyme from developing kernels of maize have been detected after DEAE-cellulose chromatography. Branching-enzyme I, which contained 24% of the activity based on a phosphorylase-stimulation assay, but 74% of the activity based on the branching of amylose as monitored by change in spectra of the iodine-glucan complex, eluted with the column wash and was unassociated with starch-synthase activity. Branching-enzyme II was bound to DEAE-cellulose and was coeluted with both primed and unprimed starch-synthase activities. Both fractions were further purified by chromatography on aminoalkyl-Sepharose columns. Single peaks were observed for both fractions by gel filtration on BioGel A1.5m columns and native molecular weights were estimated at 70,000–90,000 for both enzymes. Subunit molecular weights of branching-enzymes I and II were estimated by dodecyl sodium sulfate-gel electrophoresis at 89,000 and 80,000, respectively. Thus both enzymes are primarily monomeric. Branching-enzymes I and II could be distinguished by chromatography on DEAE-cellulose or 4-aminobutyl-Sepharose, and by disc-gel electrophoresis with activity staining. Branching-enyme I had a lower ratio of activity (phosphorylase stimulation-amylose branching; based on enzyme units). The ratio varied from 30–60 as compared to about 300–500 for branching-enzyme II. Likewise, branching-enzyme I had a lower Km value for amylose than branching- enzyme II, the values being 160 and 500 μg/ml, respectively. Both enzymes could introduce further branches into amylopectin, as decreases in the overall absorption and wavelength maxima of the iodine complexes were observed. Combined action of the branching enzymes and rabbit-muscle phosphorylase a (12:1 ratio based on enzyme units) resulted in similar patterns of incorporation of d-glucose into the growing α-d-glucan and the synthesis of high molecular-weight polymers. However, the α-d-glucans differed, as shown by spectra of iodine complexes and average unit-chain length. Branching-enzyine II was separated into two fractions (IIa and IIb) by chromatography on 4-aminobutyl-Sepharose. These Fractions differed only in the branching of amylopectin, fractional IIb being more active than IIa.  相似文献   

5.
The molecular conformation of (1→3)-α-D-glucan tribenzoate (TBG) was studied by X-ray diffraction measurements coupled with a conformational analysis. Although the fiber pattern obtained was of very low crystallinity, the presence of a meridional reflection at the 5th layer line indicated that the TBG molecule took a five-fold helical conformation with a 19.63 A fiber repeat. A conformational analysis on the five-fold helix, which was done by calculating van der Waals’ repulsion energy between non-bonded atoms comprising the TBG chain, suggested that the most preferable energy-based conformation was –5/1, a left-handed five-fold helix.  相似文献   

6.
Two different glucans (PS-I, water-soluble; and PS-II, water-insoluble) were isolated from the alkaline extract of fruit bodies of an edible mushroom Calocybe indica. On the basis of acid hydrolysis, methylation analysis, periodate oxidation, and NMR analysis ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these polysaccharides were established as: PS-I: →6)-β-D-Glcp-(1→6)-β-D-glcp-(1→6)-)-β-D-Glcp-(1→ α-D=Glcp (Water-soluble glucan). PS-II: →3)-β-D-Glcp-(1→3)-β-D-glcp-(1→3)-)-β-D-Glcp-(1→3)-β-D-Glcp-(1→ β-D-Glcp (Water-insoluble glucan, Calocyban).  相似文献   

7.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

8.
9.
《Carbohydrate research》1988,172(1):11-25
Benzyl-3-O-benzyl-2-benzyloxycarbonylamino-6-O-[2-benzyloxycarbonyl-amino-2-deoxy-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)- β-d-glucopyranosyl]-2-deoxy-α-d-glucopyranoside was coupled with methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-α-d-manno-2-octulopyranosyl bromide)onate (13) to yield the α-glycosidically linked trisaccharide. After deacetylation and selective introduction of a second 7′,8′-O-tetraisopropyldisiloxane group, a further glycosidation reaction with 13 led regioselectively to the tetrasaccharide benzyl O-[methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-α-d-manno-2-octulopyranosyl)onate]-(2→4)-O-{methyl [3-deoxy-7,8-O-(tetraisopropyldisiloxane-1,3-diyl)-α-d-manno-2-octulopyranosyl]-onate}-(2→6)-O- [2-benzyloxycarbonylamino-2-deoxy-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-β-d-glucopyranosyl]- (1→6)-3-O-benzyl-2-benzyloxycarbonyl-amino-2-deoxy-α-d-glucopyranoside. A series of deblocking steps gave O-(3-deoxy-α-d-manno-2-octulopyranosylonic acid)-(2→4)-O-(3-deoxy-α-d-manno-2-octulopyranosylonic acid)- (2→6)-O-(2-amino-2-deoxy-β-d-glucopyranosyl)-(1→6)-2-amino-2-deoxy-d-glucopyranose which was identical with a tetrasaccharide that had been isolated by hydrazinolysis of the lipopolysaccharide from Salmonella minnesota R 595. Hence, synthetic proof is provided for the linkages in this part of the inner core region of lipopolysaccharides.  相似文献   

10.
《Carbohydrate research》1988,173(1):89-99
Reactions of (1→4)- and (1→6)-linked disaccharides, mainly of maltose and isomaltose, with the Fenton reagent under physiological conditions were studied. Chemical characterization of oxidation products was conducted by g.l.c. and g.l.c.-m.s. of their trimethylsilyl derivatives, and the results demonstrated that (1→6)-linked disaccharides are more reactive with the hydroxyl radical (·OH) generated by the Fenton reagent than (1→4)-linked disaccharides. About 35–40% of (1→6)-and 15–20% of (1→4)-linked disaccharides were oxidatively degraded to smaller molecules after incubation for 24 h. Of the four disaccharides examined, namely, maltose, isomaltose, cellobiose, and gentiobiose, the α-(1→6)-linked disaccharide isomaltose exhibited the highest reactivity, whereas the β-(1→4)-linked disaccharide cellobiose showed the lowest. These results suggest the existence of a relationship between the configuration of the glycosidic linkage and the reactivity with ·OH in aqueous solution.  相似文献   

11.
6(I),6(IV)-Di-O-[α-l-fucopyranosyl-(1→6)-2-acetamido-2-deoxy-β-d-glucopyranosyl]-cyclomaltoheptaose (βCD) {6(I),6(IV)-di-O-[α-l-Fuc-(1→6)-β-d-GlcNAc]-βCD (5)} and 6-O-[α-l-fucopyranosyl-(1→6)-2-acetamido-2-deoxy-β-d-glucopyranosyl]-βCD {6-O-[α-l-Fuc-(1→6)-β-d-GlcNAc]-βCD (6)} were chemically synthesized using the corresponding authentic compounds, bis(2,3-di-O-acetyl)-pentakis(2,3,6-tri-O-acetyl)-βCD as the glycosyl acceptor and 2,3,4-tri-O-benzyl-α-l-fucopyranosyl-(1→6)-3,4-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-d-glucopyranosyl trichloroacetimidate as the fuco-glucosaminyl donor. NMR confirmed that α-l-Fuc-(1→6)-d-GlcNAc was bonded by β-linking to the βCD ring. To evaluate biological efficiency, the biological activities of the new branched βCDs were examined. The cell detachment activity of 5 was lower than that of 6 in real-time cell sensing (RT-CES) assay, indicating that 5 has lower toxicity. In SPR analysis, 5 had a higher special binding with AAL, a fucose-recognizing lectin. These results suggest that 5 could be an efficient drug carrier directed at cells expressing fucose-binding proteins.  相似文献   

12.
13.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

14.
The conformational flexibility and the dynamics of -D-Glcp-(12)--D-Glcp-(13)--D-Glcp-OMe (I) has been investigated by Metropolis-Monte Carlo with the HSEA (Hard Sphere Exo-Anomeric) force field and Langevin dynamics simulations employing two different CHARMm (Chemistry at HARvard Molecular Mechanics) force fields, CHEAT95 and PARM22. The conformational space spanned by the molecule is similar for the two former force fields but differ significantly for the latter. Hydrogen bonding between O2 and O4 of the title compound is analysed in comparison to NMR and preliminary results from X-ray powder diffraction studies. © 1998 Rapid Science Ltd  相似文献   

15.
The synthesis of conjugates consisting of two or three mannose units interconnected by a 1,2,3-triazole linker installed by the "click" reaction is reported. These conjugates were evaluated in mycobacterial mannosyltransferase (ManT) assay. Detailed analysis of the reaction products showed that these compounds with triazole linker between sugar moieties were tolerated by the enzyme, which elongated them by one or two sugar units with α-(1→6) linkage. The effectiveness of this transfer was reduced in comparison to that observed for the acceptor analogues containing a glycosidic linkage, but still, this is the first report on such unnatural compounds serving as substrates for mycobacterial ManT. The ability of the studied compounds to function as acceptors for the ManT suggests that the relative distance and spatial orientation of acceptor octyl hydrophobic aglycone (optimal length for the ManT) and free primary C-6 hydroxy group of the nonreducing terminal mannose unit (to which glycosyl residue is transferred by the mycobacterial ManT) are important for ManT activity, but at the same time, their variations are tolerated by the enzyme in a relatively wide range.  相似文献   

16.
17.
18.
An immunostimulating water-soluble glucan was isolated from hot aqueous extract of fruit bodies of an edible mushroom Calocybe indica. Structural investigation of the glucan was carried out using acid hydrolysis, methylation analysis, and NMR studies ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments, the structure of the repeating unit of the polysaccharide was established as [see figure in text]. This glucan stimulated the splenocytes and thymocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号