首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An earlier report suggested that SS33410, structurally related to folimycin and bafilomycin A(1), blocked secretion of the glycoprotein (G protein) of vesicular stomatitis virus (VSV) into the medium and, instead, G protein was accumulated intracellulary. To identify the inhibition site of SS33410 in intracellular protein transport, I have analyzed the oligosaccharide chain structure of the intracellularly accumulated G protein. In SS33410-treated VSV-infected cells, G protein oligosaccharide was suggested to have a composition of GlcNAc-Man(5)-GlcNAc(2) as analyzed by Bio-Gel P-4 column chromatography following digestion with alpha-mannosidase, beta-N-acetylhexosaminidase, and then with alpha-mannosidase. SS33410 specifically inhibited vacuolar-type ATPase (V-ATPase). These studies thus suggest that SS33410 blocks the intracellular protein transport before the step of trimming by mannosidase II, which is confined to the medial Golgi compartment.  相似文献   

2.
L-type voltage dependent Ca2+ channels (L-VDCCs; Cav1.2) are crucial in cardiovascular physiology. In heart and smooth muscle, hormones and transmitters operating via Gq enhance L-VDCC currents via essential protein kinase C (PKC) involvement. Heterologous reconstitution studies in Xenopus oocytes suggested that PKC and Gq-coupled receptors increased L-VDCC currents only in cardiac long N-terminus (NT) isoforms of α1C, whereas known smooth muscle short-NT isoforms were inhibited by PKC and Gq activators. We report a novel regulation of the long-NT α1C isoform by Gβγ. Gβγ inhibited whereas a Gβγ scavenger protein augmented the Gq- but not phorbol ester-mediated enhancement of channel activity, suggesting that Gβγ acts upstream from PKC. In vitro binding experiments reveal binding of both Gβγ and PKC to α1C-NT. However, PKC modulation was not altered by mutations of multiple potential phosphorylation sites in the NT, and was attenuated by a mutation of C-terminally located serine S1928. The insertion of exon 9a in intracellular loop 1 rendered the short-NT α1C sensitive to PKC stimulation and to Gβγ scavenging. Our results suggest a complex antagonistic interplay between Gq-activated PKC and Gβγ in regulation of L-VDCC, in which multiple cytosolic segments of α1C are involved.  相似文献   

3.
In this report, we have asked whether asparagine-linked oligosaccharides added to new sites in the polypeptide backbone of a model plasma membrane glycoprotein, the vesicular stomatitis virus G protein, can promote its intracellular transport. We modified the coding sequence of G protein lacking the two normal consensus sites for glycosylation by oligonucleotide-directed mutagenesis to create new consensus sites. The expression of the mutant proteins was then analyzed in transfected cells. Six of the eight new sites which were introduced were glycosylated, and an oligosaccharide at two of these new sites promoted transport of G protein which lacked the two normal sites. However, the efficiency of this process was reduced compared to the wild-type protein or to the proteins with only one oligosaccharide at either of the normal sites. In addition, an oligosaccharide at two of the other new sites caused inhibition of transport of the wild-type G protein. The data in this and the following report suggest that carbohydrate plays an indirect role in the intracellular transport of G protein.  相似文献   

4.
During seed development, various storage proteins and hydrolases accumulate in specialized storage vacuoles, the protein bodies, via an elaborate intracellular transport system involving the rough endoplasmic reticulum, the Golgi apparatus, and transit vesicles. Clathrin-coated vesicles, similar to those which transport lysosomal proteins to lysosomes, an organelle analogous to the vacuole, in animal cells, could be involved in this intracellular transport mechanism. Clathrin-coated vesicles have been isolated from cotyledons of developing pea (Pisum sativum L.) seeds at the time of rapid protein accumulation and analyzed for the presence of protein body constitutents. A 23,000 Mr polypeptide, corresponding to pea lectin precursor, was found associated with the vesicles, as determined by immunoblotting. The lectin precursor was apparently sequestered within the vesicles, as the polypeptide was only susceptible to proteolysis if detergents were included in the digestion buffer. A number of glycosidase activities, including α-mannosidase, α-galactosidase, and β-N-acetylhexosaminidase, were also associated with the vesicles. Thus, it appears that clathrin-coated vesicles are involved in the intracellular transport of storage proteins during seed development.  相似文献   

5.
All three α2-adrenoceptor subtypes have a long third intracellular loop (3i), which is conserved by overall size and charge-hydrophobic properties but not by amino acid sequence similarity. These properties must be relevant for function and structure, because they have been preserved during hundreds of millions of years of evolution. The contribution of different loop portions to agonist/antagonist binding properties and G protein coupling of the human α2B-adrenoceptor (α2B-AR) was investigated with a series of 3i truncated constructs (Δ 3i). We used a variety of agonists/antagonists in competition binding assays. We stimulated α2B-AR Δ3i with various agonists and measured [35S]GTPγS binding in isolated cell membranes with or without antagonist inhibition. We also evaluated the ability of oligopeptides, analogous to the amino and carboxyl terminal parts of 3i, to promote G protein activation, monitored with the [35S]GTPγS assay. Our results reveal that the carboxyl end residues of 3i, R360(6.24) to V372(6.36), are important for Gi/Go protein activation. Deletions in regions from G206(5.72) to R245(5.110) altered the binding of some α2B-AR agonists, indicating that agonist binding is dependent on the conformation of the 3i domain, possibly through the involvement of G protein interactions. The truncated receptor constructs may be more stable on purification and thus be useful for structural characterization of α2B-AR.  相似文献   

6.
Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5′-diphosphate (GDP) release by the G protein α-subunit is not well understood. Amino acid substitutions in the conserved α5 helix of Gi, which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant Gαi1-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of Gαi1-T329A·GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg+2 coordination sphere and dislodge bound Mg+2. We propose a “sequential release” mechanism whereby a transient conformational change in the α5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8.  相似文献   

7.
Various aspects of the processing of Blattella germanica vitellin (Vt) in the oocyte and egg have been investigated. Employing subunit specific antibodies, the precursor product relationships among the subunits of this Vt have been determined. After endocytosis of Vt by the oocyte, the Mr 160,000 subunit Vt is cleaved to products of Mr 95,000 and Mr 50,000. In association with an unprocessed Mr 102,000 peptide, these form the subunits of the Vt of freshly ovulated eggs. Between 4 and 5 days post ovulation (at 30°C), all three subunits of Vt are again processed proteolytically before use by the embryo. Although Vt's high mannose-type oligosaccharides are trimmed during embryogenesis, their modification occurs subsequent to the day 4–5 proteolysis, precluding the possibility that changes in oligosaccharide content or structure contribute to regulating this second proteolytic event. Although the predominant oligosaccharide of Vt is Man9GlCNAc2, the Mr 50,000 subunit of egg-borne Vt contains a much higher proportion of Man6GlCNAc2 than the other two subunits; therefore, this portion of the precursor vitellogenin must be more accessible to the processing mannosidases of the endoplasmic reticulum during its biosynthesis. A microtechnique for aspirating the yolk from individual eggs in an oothecapermits its isolation free of contamination by embryonic tissue. With this procedure, the specific activity profiles of exo-α-mannosidase, exp-β-N-acetylglucosaminidase, α-glucosidase and acid phosphatase were monitored during the first 6 days after ovulation, and some of their properties were also determined. Expression of the acid phosphatase and exo-β-N-acetyl-glucosaminidase activities coincide with the day 4–5 proteolysis, while α-mannosidase remains relatively constant throughout the first 6 days. Functions for these enzymes and the oligosaccharides of Vt during Vt storage and utilization are proposed.  相似文献   

8.
Two forms of p-nitrophenyl α-D-mannosidase and p-nitrophenyl α-D-galactosidase were purified from the protein bodies of mature Lupinus angustifolius seeds. A MW of 300 000 was calculated for both α-mannosidase A and B with Km = 1.92 and 2.70 mM and activation energies of 10.9 and 10.8 kcal/mol, respectively. α-Galactosidase I and II had MWs of 70800 and 17000 with Km = 0.282 and 0.556 mM and activation energies 17.7 and 11.5 kcal/mol, respectively. The enzymes had acid pH optima and were inhibited by various metal ions, carbohydrates and glycoproteins. They were able to release free sugar from several putative natural substrate oligosaccharides and the Lupinus storage glycoprotein, α-conglutin.  相似文献   

9.
The intrinsic structural determinants for export trafficking of G protein‐coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The α2B‐adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates α2B‐AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of α2B‐AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of β2‐AR, α1B‐AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.  相似文献   

10.
ABSTRACT

Different assay technologies are available that allow ligand occupancy of G protein coupled receptors to be converted into robust functional assay signals. Of particular interest are universal screening systems such that activation of any GPCR can be detected with a common assay end point. The promiscuous G protein Gα16 and chimeric G proteins are broadly used tools for setting up almost universal assay systems. Many efforts focused on making G proteins more promiscuous, however no attempts have been made to make promiscuos G proteins more sensitive by interfering with their cellular protein distribution. As a model system, we used a promiscuous G protein αq subunit, that lacks the highly conserved six amino acid N-terminal extension and bears four residues of αi sequence at its C-terminus replacing the corresponding αq sequence (referred to as Δ6qi4). When expressed in COS7 cells, Δ6qi4 undergoes palmitoylation at its N-terminus. Cell fractionation and immunoblotting analysis indicated localization in the particulate and cytosolic fraction. Interestingly, introduction of a consensus site for N-terminal myristoylation (the resulting mutant referred to as Δ6qi4myr) created a protein that was dually acylated and exclusively located in the particulate fraction. As a measure of G protein activation Δ6qi4 and Δ6qi4myr were coexpressed (in CHO cells) with a series of different Gi/o coupled receptors and ligand induced increases in intracellular Ca2+ release were determined with the FLIPR? technology (Fluorescence plate imaging reader from Molecular Devices Corp.). All of the receptors interacted more efficiently with Δ6qi4myr as compared with Δ6qi4. It could be shown that increased functional responses of agonist activated GPCRs are due to the higher content of Δ6qi4myr in the plasma membrane. Our results indicate that manipulation of subcellular localization of G protein α subunits—moving them from the cytosol to the plasma membrane-potentiates signaling of agonist activated GPCRs. It is concluded that addition of myristoylation sites into otherwise exclusively palmitoylated G proteins is a new and sensitive approach and may be applicable when functional assays are expected to yield weak signals as is the case when screening extracts of tissues for biologically active GPCR ligands.  相似文献   

11.
Expression of proteins on the surface of yeast has a wide range of applications, such as development of live vaccines, screening of antibody libraries, and use as whole-cell biocatalysts. The hemiascomycetes yeast Yarrowia lipolytica has been raised as a potential host for heterologous expression of recombinant proteins. In this study, we report the expression of Aspergillus saitoi α-1,2-mannosidase, encoded by the msdS gene, on the cell surface of Y. lipolytica. As the first step to achieve the secretory expression of msdS protein, four different signal sequences-derived from the endogenous Y. lipolytica Lip2 and Xpr2 prepro regions and the heterologous A. niger α-amylase and rice α-amylase signal sequences-were analyzed for their secretion efficiency. It was shown that the YlLip2 prepro sequence was most efficient in directing the secretory expression of msdS in fully N-glycosylated forms. The surface display of msdS was subsequently directed by fusing GPI anchoring motifs derived from Y. lipolytica cell wall proteins, YlCwp1p and YlYwp1p, respectively, to the C-terminus of the Lip2 prepro-msdS protein. The expression of actively functional msdS protein on the cell surface was confirmed by western blot, flow cytometry analysis, along with the α-1,2-mannosidase activity assay using intact Y. lipolytica cells as the enzyme source. Furthermore, the glycoengineered Y. lipolytica Δoch1Δmpo1 strains displaying α-1,2-mannosidase were able to convert Man8GlcNAc2 to Man5GlcNAc2 efficiently on their cell-wall mannoproteins, demonstrating its potential used for glycoengineering in vitro or in vivo.  相似文献   

12.
To investigate the role of integrin and G protein pathways in the mechanotransduction process within MCCs and explore the possible crosstalk between the two traditional signal pathways, in vitro-cultured rabbit MCCs were treated with pressure. The mRNA level of α5β1 integrin was determined by in situ hybridization and the distributions of vinculin, Gαq/11 protein, F-actin and intracellular calcium were studied with a laser scanning confocal microscope. Increased integrin α5β1 expression, enhanced stress fiber assembly, elevated G protein and vinculin level and up-regulated IP3 channel sensitivity were found in the mechanotransduction process of MCCs under pressure. Furthermore, the vinculin and the Gαq/11 were observed co-localized with each other, and the F-actin reassembly and stress fibers formation could be inhibited by intracellular calcium channel blocking, which gave direct evidence that the traditional integrin-mediated or G protein-mediated signaling pathways coordinately regulate the function of MCCs under mechanical stimulation.  相似文献   

13.
The vectorial transport of vesicular stomatitis virus (VSV) G protein between the ER and the cis and medial Golgi compartments has been reconstituted using semi-intact (perforated) cells. The transport of VSV-G protein between successive compartments is measured by the sequential processing of the two N-linked oligosaccharide chains present on VSV-G protein to the endoglycosidase (endo) H-resistant structures which have unique electrophoretic mobilities during sodium dodecyl sulfate-gel electrophoresis. The appearance of a form of VSV-G which contains only one endo H-resistant oligosaccharide chain (GH1) is kinetically and biochemically indistinguishable from the appearance of the Man5, endo D-sensitive form (GD), the latter being a processing reaction diagnostic of transport from the ER to the cis Golgi compartment. These results provide evidence that the cis Golgi compartment may contain in addition to alpha-1,2-mannosidase I, both N-acetylglueosamine transferase I and alpha-1,2-mannosidase II. VSV-G protein is subsequently processed to the form which contains two endo H-resistant oligosaccharides (GH2) after a second wave of vesicular transport. Processing of GH1 to GH2 in vitro occurs only after a lag period following the appearance of GH1; processing is sensitive to N-ethylmaleimide, guanosine-5'-O-(3-thiotriphosphate), and a synthetic peptide homologous to the rab1 protein effector domain, and processing is inhibited in the absence of free Ca2+ (in the presence of EGTA), reagents which potently inhibit ER to cis Golgi transport. These results suggest that VSV-G protein proceeds through at least two rounds of vesicular transport from the ER to the medial Golgi compartment for processing to the GH2 form, providing a model system to study the regulation of the vectorial membrane fission and fusion events involved in vesicular trafficking and organelle dynamics in the early stages of the secretory pathway.  相似文献   

14.
Recently, several investigators have explored the possibility of targetting ricin to designated cell types in animals by its linkage to specific antibodies. There is evidence, however, that the mannose-containing oligosaccharide chains on ricin are recognised by reticuloendothelial cells in the liver and spleen and so cause the immunotoxins to be removed rapidly from the blood stream. In the present study we analysed the carbohydrate composition of ricin and examined enzymic methods for removing the carbohydrate. The carbohydrate analysis ricin A-chain revealed the presence of one residue of xylose and one of fucose in addition to mannose and N-acetylglucosamine which had been detected previously. The B-chain contained only mannose and N-acetylglycosamine. Ricin A-chain is heterogeneous containing two components of molecular weight 30 000 and 32 000. Strong evidence was found that the heavier form of the A-chain contains an extra carbohydrate unit which is heterogeneous with respect to concanavalin A binding and sensitivity to endoglycosidase H. The lower molecular weight form of A-chain did not bind concanavalin A and was insusceptible to endoglycosidases. Only one of the two high mannose oligosaccharide units on the isolated B-chain could be removed by endoglycosidases H or F, whereas both were removable after denaturation of the polypeptide by SDS. Both the isolated A- and B-chains were sensitive to α-mannosidase. Intact ricin was resistant to endoglycosidase treatment and was only slightly sensitive to α-mannosidase. The addition of SDS allowed endoglycosidase H to remove both of the B-chain oligosaccharides from intact ricin and increased the toxin's sensitivity to α-mannosidase. In conclusion, extensive enzymic deglycosylation of ricin may only be possible if the A- and B-chains are first separated, treated with enzymes and then recombined to form the toxin.  相似文献   

15.
Glycoproteins present in the soluble and organelle fractions of developing bean (Phaseolus vulgaris) cotyledons were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, affinoblotting, fractionation on immobilized concanavalin A (ConA), and digestion of the oligosaccharide side chains with specific glycosidases before and after protein denaturation. These studies led to the following observations. (a) Bean cotyledons contain a large variety of glycoproteins that bind to ConA. Binding to ConA can be eliminated by prior digestion of denatured proteins with α-mannosidase or endoglycosidase H, indicating that binding to ConA is mediated by high-mannose oligosaccharide side chains. (b) Bean cotyledons contain a large variety of fucosylated glycoproteins which bind to ConA. Because fucose-containing oligosaccharide side chains do not bind to ConA, such proteins must have both high-mannose and modified oligosaccharides. (c) For all the glycoproteins examined except one, the high-mannose oligosaccharides on the undenatured proteins are accessible to ConA and partially accessible to jack bean α-mannosidase. (d) Treatment of the native proteins with α-mannosidase removes only 1 or 2 mannose residues from the high-mannose oligosaccharides. Similar treatments of sodium dodecyl sulfate-denatured or pronase-digested glycoproteins removes all α-mannose residues. The results support the following conclusions: certain side chains remain unmodified as high-mannose oligosaccharides even though the proteins to which they are attached pass through the Golgi apparatus, where other oligosaccharide chains are modified. The chains remain unmodified because they are not accessible to processing enzymes such as the Golgilocalized α-mannosidase.  相似文献   

16.
Human α1D-adrenoceptors (α1D-ARs) are a group of the seven transmembrane-spanning proteins that mediate many of the physiological and pathophysiological actions of adrenaline and noradrenaline. Although it is known that α1D-ARs are phosphoproteins, their specific phosphorylation sites and the kinases involved in their phosphorylation remain largely unknown. Using a combination of in silico analysis, mass spectrometry and site directed mutagenesis, we identified distinct α1D-AR phosphorylation patterns during noradrenaline- or phorbol ester-mediated desensitizations. We found that the G protein coupled receptor kinase, GRK2, and conventional protein kinases C isoforms α/β, phosphorylate α1D-AR during these processes. Furthermore, we showed that the phosphorylated residues are located in the receptor's third intracellular loop (S300, S323, T328, S331, S332, S334) and carboxyl region (S441, T442, T477, S486, S492, T507, S515, S516, S518, S543) and are conserved among orthologues but are not conserved among the other human α1-adrenoceptor subtypes. Additionally, we found that phosphorylation in either the third intracellular loop or carboxyl tail was sufficient to regulate calcium signaling desensitization. By contrast, mutations in either of these two domains significantly altered mitogen activated protein kinase (ERK) pathway and receptor internalization, suggesting that they have differential regulatory mechanisms. Our data provide new insights into the functional repercussions of these posttranslational modifications in signaling outcomes and desensitization.  相似文献   

17.
细菌VI型分泌系统(type VI secretion system,T6SS)作为一个动态多蛋白复合体,各元件之间分工明确,转运各种效应蛋白作用于竞争细菌获得自我生长优势。鲍曼不动杆菌(Acinetobacter baumannii,Ab)通过T6SS介导细菌在微生物群落中的竞争能力,影响其耐药进化、宿主侵袭感染等过程。其中,缬氨酸-甘氨酸-精氨酸G蛋白三聚体(valine-glycine repeat protein G,VgrG)、脯氨酸-丙氨酸-丙氨酸-精氨酸重复序列蛋白(proline-alanine-alanine-arginine,PAAR)、溶血素共调节蛋白(hemolysin-coregulated protein,Hcp)和效应-免疫(effector-immunity,E-I)对发挥着关键作用。有关T6SS的研究总结虽然很多,但是鲜有文章系统概述其临床应用前景,因为这对T6SS功能蛋白的鉴定、特性、转运机制等基础研究的进展提出了挑战。本文通过综述鲍曼不动杆菌中T6SS的分布、主要功能蛋白的特性及转运机制的研究进展,结合T6SS的应用案例,提供其应用的可行性证据。以期进一步推动鲍曼不动杆菌VI型分泌系统基因和功能的研究,为开发新型抗感染疫苗、筛选合适的靶点抑制剂及生产工程化药物递送工具提供新的思路。  相似文献   

18.
The mannose residue in (Man)1 (GlcNAc)2-Asn obtained by a Smith degradation of the acidic glycopeptide from porcine thyroglobulin was found to be insusceptible to α-mannosidase. This residue was hydrolyzed, however, by purified β-mannosidase. After β-mannosidase treatment, the resulting (GlcNAc)2-Asn was compared with synthetic glycosyl-asparagine derivatives. From these experiments, the core structure of the acidic glycopeptide was proposed to be β-Man-(1 → 3 or 4)-β-GlcNAc-(1 → 4)-GlcNAc-Asn.  相似文献   

19.
An α-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified α-mannosidase was estimated to be 120 kDa by SDS–PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo α-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala–Phe–Met–Lys–Tyr–X–Thr–Thr–Gly–Gly–Pro–Val–Ala–Gly–Lys–Ile–Asn–Val–His–Leu–. The α-mannosidase activity for Man5GlcNAc1 was enhanced by the addition of Co2+, but the addition of Zn2+, Ca2+, or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man6GlcNAc1 was significantly faster than that for pyridylaminated Man6GlcNAc2, suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013–1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an α-mannosidase, which is activated by Co2+ and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

20.
The carbohydrate side chain of bovine pancreatic deoxyribonuclease A, which is attached to asparagine residue 18, contains two residues of N-acetylglucosamine proximal to the peptide chain followed by a variable number of mannose residues (4–10). The oligosaccharide structure bears a similarity to that in bovine pancreatic ribonuclease B. The present sequence studies have made use of α-mannosidase chromatographically purified from jack bean meal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号