首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

2.
l-Threonine producing α-amino-β-hydroxyvaleric acid resistant mutants were derived from E. coli K-12 with 3 x 10-5 frequency. One of mutants, strain β-101, accummulated maximum amount of l-threonine (1. 9 g/liter) in medium. Among isoleucine, methionine and lysine auxotrophs derived from E. coli K-12, only methionine auxotrophs produced l-threonine. In contrast, among isoleucine, methionine and lysine auxotrophs derived from β-101, l-threonine accumulation was generally enhanced in isoleucine auxotrophs. One of isoleucine auxotrophs, strain βI-67, produced maximum amount of l-threonine (4. 7 g/liter). Methionine auxotroph, βM-7, derived from β-101 produced 3.8 g/liter, and βIM-4, methionine auxotroph derived from β1-67, produced 6.1 g/liter, when it was cultured in 3% glucose medium supplemented with 100 μg/ml of l-isoleucine and l-methionine, respectively. These l-threonine productivities of E. coli mutants were discussed with respect to the regulatory mechanisms of threonine biosynthesis. A favourable fermentation medium for l-threonine production by E. coli mutants was established by using strain βM-4.  相似文献   

3.
l-Homoserine was prepared by the reduction of l-aspartic acid β-methyl ester with sodium borohydride in water solution without any racemization. The yield of l-homoserine was about 25% of the theoretical amount, and no product other than l-homoserine, l-aspartic acid and l-aspartic acid β-methyl ester was present in the reaction mixture. The low yield of l-homoserine was ascribed to the hydrolysis of the ester.

l-Azetidine-2-carboxylic acid could not be detected in the reaction mixture. In contrast with the reduction of l-glutamic acid γ-esters, the reduction of l-aspartic acid β-ester was not accompanied by the cyclization.  相似文献   

4.
The synthesis of l-tyrosine or 3,4-dihydroxyphenyl-l-alanine (l-dopa) from pyruvate, ammonia and phenol or pyrocatechol was studied with intact cells of Erwinia herbicola ATCC 21434 containing high tyrosine phenol lyase activity. By elemental analyses and determination of optical activity, the tyrosine or dopa synthesized was confirmed to be entirely of l-form. Maximum amount of l-tyrosine (60.5 g/liter) or l-dopa (58.5 g/liter) was formed using this enzymatic method by feeding sodium pyruvate and phenol or pyrocatechol. However, large amounts of by-products were formed in the l-dopa synthetic reaction mixture. By-products were proved to be formed from l-dopa and pyruvate by a nonenzymic reaction. pH and the temperature of reaction had intensive effects on the formation of by-products. A simple method using a boric acid-pyrocatechol complex was devised, as the feeding procedure of substrates was complicated.  相似文献   

5.
Better producers of l-lysine were obtained by derivation of fluoropyruvate(FP)-sensitive mutants from Brevibacterium lactofermentum AJ3990. The coexistence of FP and excess biotin synergistically stimulated l-lysine formation by washed cells. FP inhibited 50% of growth and pyruvate dehydrogenase (PDH) activity of AJ3990 at 0.04 mm and 1 mm, respectively. Therefore, the synergistic effect of FP and excess biotin seems to be due to the optimization of the PDH/pyruvate carboxylase activity ratio in l-lysine biosynthesis. This was confirmed by the derivation of FP-sensitive mutants which have the optimal level of PDH activity for l-lysine production. The best producer, AJ11204, had about 27% PDH activity as compared with the parental strain and accumulated 70 g of l-lysine per liter with a conversion yield of 50% from glucose in the presence of excess biotin.  相似文献   

6.
The growth of Brevibacterium flavum No. 2247 was inhibited over 90% at a concentration above 1 mg/ml of α-amino-β-hydroxyvaleric acid, a threonine analogue, and the inhibition was reversed by the addition of l-threonine, and to lesser extent by l-leucine, l-isoleucine, l-valine and l-homoserine. l-Methionine stimulated the inhibition. Several mutants resistant to the analogue produced l-threonine in the growing cultures. The percentage of l-threonine producer in the resistant mutants depended on the concentration of the analogue, to which they were resistant. The best producer, strain B-183, was isolated from resistant strains selected on a medium containing 5 mg/ml of the analogue. Mutants resistant to 8 mg/ml of the analogue was derived from strain B-183 by the treatment with mutagen, N-methyl-N’-nitro-N-nitrosoguanidine. Among the mutants obtained, strain BB-82 produced 13.5 g/liter of l-threonine, 30% more than did the parental strain. Among the resistant mutants obtained from Corynebacterium acetoacidophilum No. 410, strain C-553 produced 6.1 g/liter of l-threonine. Several amino acids other than l-threonine were also accumulated, and these accumulations of amino acids were discussed from the view of regulation mechanism of l-threonine biosynthesis.  相似文献   

7.
Comparative studies were made of the polymerization of l-aspartic and l-glutamic acid dialkyl esters using polyethylene glycol–modified papain as a catalyst in phosphate buffer (pH 7.5) and in benzene. Changes in the substrate specificity of papain and in the composition of oligomerized products were observed. In the buffer, the diethyl and di-n-propyl esters of l-glutamic acid were sufficiently converted to high molecular weight oligomers with the accumulation of dimer and trimer, but l-aspartic acid esters were very poor substrates. In benzene, l-aspartic acid esters became more reactive than L-glutamic acid esters. In particular, from l-aspartic acid dimethyl ester the product, which was mainly composed of heptamer to decamer, was obtained in a 90% yield. The reaction in benzene required desalted substrates and a small amount of water to proceed extensively.  相似文献   

8.
5-Fluorotryptophan (5FT), indolmycin (IM), 4-fluorotryptophan and 7-azatryptophan were found on screening to be tryptophan antagonists among various chemically synthesized and naturally occurring tryptophan analogues for the isolation of l-tryptophan (l-Trp) producing mutants of Bacillus subtilis K.

From among 5FT resistant mutants, potent l-Trp producers were obtained using an improved isolation medium. Growth of the isolated 5FT-resistant l-Trp producer, AJ 11709, was inhibited by IM. From among 5FT and IM resistant mutants, the best strain, AJ 11979, which produced 9.0 g/liter of l-Trp from 13% glucose on 120hr cultivation, was selected.  相似文献   

9.
The excellent l-leucine producing mutant No. 218, derived from a biotin requiring glutamic acid producing strain, is methionine and isoleucine auxotrophic. A suboptimum growth condition made by adding a limiting amount of isoleucine was necessary for the maximum production of l-leucine. On the other hand, methionine was indifferent to the productivity if sufficiently supplied for growth.

Biotin of more than 50 μg/liter caused the accumulation of l-leucine; less than 50 μg/liter, however, gave a drastic change in accumulation pattern from l-leucine to l-glutamic acid. Strain No. 218 produced 28 mg/ml of l-leucine after 72 hr cultivation when 13 % glucose was supplied as a carbon source, thus giving the yield of 21.6%.

Effects on l-leucine production of concentrations of inorganic salts, pH, temperature and aeration were also investigated.  相似文献   

10.
1. Some of 5-methyltrypotophan (5MT)-resistant mutants derived from glutamate-producing bacteria such as Brevibacterium flavum, Corynebacterium acetoglutamicum and Micrococcus glutamicus produced a small amount of l-tryptophan, while tyrosine and phenylalanine auxotrophs of B. flavum did not.

2. 5-MT-resistant mutant derived from the auxotroph for tyrosine and phenylalanine produced 390 mg/liter of l-tryptophan at most. A mutant resistant to a higher concentration of 5MT, which was derived from a tyrosine and phenylalanine auxotrophic mutant which was resistant to a low concentration of 5MT, produced 660 mg/liter of l-tryptophan. Using this mutant, the effects of the concentrations of components of the culture medium on the l-tryptophan production were examined. The high concentration of l-tyrosine, but not l-phenylalanine, inhibited the l-tryptophan production. Using the improved culture medium, this strain produced 1.9 g/liter of l-tryptophan.  相似文献   

11.
Two types of l-isoleucine producing mutants were derived from l-threonine producers by the supplement of the resistance to ethionine.

Main control site in l-isoleucine biosynthetic pathway after threonine is threonine dehydratase. In case of Brevibacterium flavum No. 14083, l-isoleucine production was based on the insensitiveness of this key enzyme to feedback inhibition by l-isoleucine. As regards Brevibacterium flavum No. 168, it was based on the increase in the specific activity of this enzyme.

The former produced 11.3 g/liter of l-isoleucine and the latter produced 9.92 g/liter from glucose. The former showed a vigorous ability of acetic acid assimilation, but the latter did not.  相似文献   

12.
An inducible tryptophanase was crystallized from the cell extract of Proteus rettgeri grown in a medium containing l-tryptophan. The purification procedure included ammonium sulfate fractionation, heat treatment, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystals were obtained from solutions of the purified enzyme by the addition of ammonium sulfate.

The crystalline enzyme preparation was homogeneous by the criteria of ultracentrifugation and zone electrophoresis. The molecular weight was determined to be approximately 210,000.

The crystalline enzyme catalyzed the degradation of l-tryptophan into indole, pyruvate and ammonia in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from 5-hydroxy-l-tryptophan, 5-methyl-l-tryptophan, S-methyl-l-cysteine and l- cysteine. l-, d-Alanine, l-phenylalanine and indole inhibited pyruvate formation from these substrates.  相似文献   

13.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

14.
ω-Amino acid: pyruvate aminotransferase, purified to homogeneity and crystallized from a Pseudomonas sp. F–126, has a molecular weight of 172,000 or 167,000±3000 as determined by the gel-filtration or sedimentation equilibrium method, respectively. The enzyme catalyzes the transamination between various ω-amino acids or amines and pyruvate which is the exclusive amino acceptor. α-Amino acids except l-α-alanine are inert as amino donor. The Michaelis constants are 3.3 mm for β-alanine, 19 mm for 2-aminoethane sulfonate and 3.3 mm for pyruvate. The enzyme has a maximum activity in the pH range of 8.5~10.5. The enzyme is stable at pH 8.0~10.0 and at up to 65°C at pH 8.0. Carbonyl reagents strongly inhibit the enzyme activity. Pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate reactivate the enzyme inactivated by carbonyl reagents. The inhibition constants were determined to be 0.73 mm for d-penicillamine and 0.58 mm for d-cycloserine. Thiol reagents, chelating agents and l-α-amino acids showed no effect on the enzyme activity.  相似文献   

15.
We previously constructed an l-threonine-producing strain of E. coli W, KY8280, which is an Ile+ revertant of KY8279 which requires l-methionine, a,£-diaminopimelic acid and l-isoleucine [H. Kase et al., Agric. Biol. Chem., 35, 2089 (1971)]. From KY8280, another l-threonine-hyperproducing strain, KY8366, was obtained as an α-amino-β-hydroxy valeric acid (AHV, a threonine analog)-resistant mutant. Enzymatic analysis revealed that KY8280 constitutively expressed 8-fold higher l-threonine-sensitive aspartokinase I activity than KY8279. In addition, KY8366 constitutively expressed 13-fold higher l-lysine-sensitive aspartokinase III activity than KY8280. Such elevated levels of aspartokinases may contribute to the hyperproduction of l-threonine by these mutant strains. KY8366 produced 28 mg/ml of l-threonine in a culture medium fed with 12% glucose.  相似文献   

16.
The regulatory mechanism for l-tryptophan (l-Trp) synthesis was compared between the wild type strain and l-Trp producing mutants of B. subtilis K. In the wild type strain, indolmycin (IM) repressed the synthesis of anthranilate synthetase (AS) more strongly than 5-fluorotryptophan ? (5FT), which repressed AS to the same extent as l-Trp did. 5FT inhibited the activity of AS as strongly as l-Trp did, while IM had no inhibitory effect. In the 5FT resistant strains, the syntheses of AS and tryptophan synthetase (TS-B) were markedly increased by genetic derepression, while AS remained still sensitive to the feedback inhibition by l-Trp. The facts that IM repressed the syntheses of AS and TS-B in the strain which was 5FTr and IMS, and did not repress those in the IM-resistant mutant suggested that IM acts as a co-repressor in a different way from 5FT.  相似文献   

17.
A new antibiotic K-52B, different from K-52A, was isolated from the culture broth of Streptoverticillium roseoverticillatum subsp. albosporum, strain No. K-52. The antibiotic K-52B was thought to be a similar saccharide to K-52A from its physicochemical properties but differed from K-52A in the presence of nitrogen content. Antibiotic K-52B inhibited the growth of Gram-positive and Gram-negative bacteria, including Pseudomonas aeruginosa on a chemically defined medium. The growth inhibition was, however, reversed by l-glutamine, l-glutamic acid, l-asparagine and l-aspartic acid.  相似文献   

18.
Homoserine dehydrogenases and aspartokinases in l-threonine- or l-threonine and l-lysine-producing mutants derived from Corynebacterium glutamicum KY 9159 (Met?) were studied with respect to the sensitivity to the inhibition by end products, l-threonine and l-lysine. The activities of homoserine dehydrogenases in the mutants which produced l-threonine or l-threonine and l-lysine were slightly less susceptible to the inhibition by l-threonine than the activity in the parent strain, KY 9159. The aspartokinases in the threonine-producing mutants, KY 10484 and KY 10230, which were resistant to α-amino-β-hydroxylvaleric acid (AHV, a threonine analog) and more sensitive to thialysine (a lysine analog) than the parent, were sensitive to the concerted feedback inhibition by l-lysine and l-threonine by about the same degree as KY 9159. The aspartokinase in an AHV- and thialysine-resistant mutant, KY 10440, which was derived from KY 10484 and produced about 14 mg/ml of l-threonine in a medium containing 10% glucose was less susceptible to the concerted feedback inhibition than KY 10484 or KY 9159, although the activity was still under the feedback control. In the parent strain, l-threonine activated aspartokinase activity in the absence of ammonium sulfate, an activator of the enzyme, but partially inhibited the activity in the presence of the salt. On the other hand, the enzyme of KY 10440 was activated by l-threonine either in the presence or in the absence of the salt. In another AHV- and thialysine-resistant mutant, KY 10251, which was derived from KY 10230 and produced both 9 mg/ml of l-threonine and 5/5 mg/ml of l-lysine, l-threonine and l-lysine simultaneously added hardly inhibited the activity of aspartokinase.

Implications of these results are discussed in relation to l-threonine or l-lysine production, AHV or thialysine resistance and regulation of l-threonine biosynthesis in these mutants.  相似文献   

19.
Abstract

l-6-Hydroxynorleucine was synthesized from 2-keto-6-hydroxyhexanoic acid using branched-chain aminotransferase from Escherichia coli with l-glutamate as an amino donor. Since the branched-chain aminotransferase was severely inhibited by 2-ketoglutarate, the branched-chain aminotransferase reaction was coupled with aspartate aminotransferase and pyruvate decarboxylase. Aspartate aminotransferase converted the inhibitory 2-ketoglutarate back to l-glutamate by using l-aspartate as an amino donor. On the other hand, pyruvate decarboxylase further shifted the reaction equilibrium towards l-6-hydroxynorleucine through decarboxylation of pyruvate to acetaldehyde. The concerted action of the three enzymes significantly enhanced the yield compared to that of branched-chain aminotransferase alone. In the coupled reaction, 90.2 mM l-6-hydroxynorleucine (> 99% ee) was produced from 100 mM 2-keto-6-hydroxyhexanoic acid, whereas in a single branched-chain aminotransferase reaction only 22.5 mM l-6-hydroxynorleucine (> 99% ee) was produced.  相似文献   

20.
It is confirmed by a new method for the determination of d-glutamic acid, that Aerobacter strain A rapidly metabolizes d-glutamic acid, while it only shows feeble metabolic activity towards l-glutamic acid when it is grown on a dl-glutamate-K2HPO4 medium. A specific d-glutamic oxidase is demonstrated in the cell-free extracts of Aerobacter strain A. This enzyme seems to be different from d-glutamic-aspartic oxidase obtained from Aspergillus ustus by the authors, since the former has no activity towards d-aspartic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号