首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CD spectrum of lutein drastically changed with added amounts of sodium dodecyl sulfate (SDS) in buffers (pH 7.0) at phosphate concentrations below 70 mm. The CD pattern was inverted at particular binding ratios of SDS to the lutein, depending on the lutein concentration. The ratios were 30, 15 and 10 for lutein concentrations below 3 µm, between 3 and 8 µm, and above 8 µm, respectively. The sedimentation analysis showed strong dependence of the aggregate size of lutein on both the SDS and phosphate concentrations. The size became larger with a decrease of SDS concentration and with an increase of the salt. The sedimentation constants of these aggregates were small in comparison with those expected on the basis of parallel filtration measurements, suggesting that the aggregate was considerably porous. These results indicate that the size of the lutein aggregate is larger than 4500 Å as far as the ordinary CD pattern remains and it becomes smaller as the ordinary pattern changes to the inverted one. A card-pack structure with a chiral nature is discussed as a model of the present aggregate. In the progress of binding the SDS to the lutein, the packed lutein molecules must be twisted from the native form to the subsequent one.  相似文献   

2.
Abstract. . Morphological colour adaptation of pupae of the butterfly Inachis io L. (Lepidoptera: Nymphalidae) is controlled by a factor which reduces cuticular melanization (Biickmann & Maisch, 1987). This so-called pupal melanization reducing factor (PMRF) is located throughout the entire central nervous system of prepupae (Stamecker et al. , 1994).
Extracts of abdominal ganglia also stimulated dose-dependently lutein incorporation into pupal cuticle. In the bioassay higher doses were required to increase cuticular lutein content than to reduce melanization. Ligatures during the prepupal stage demonstrated two different critical periods for these pigmentation effects: an early one for melanization reduction and a late one for lutein incorporation.
An initial chromatographic purification yielded only two adjacent fractions which contained both the PMRF and the stimulation of lutein incorporation activity. Therefore it is assumed that only one hormone with a dual function may be responsible for pupal pigmentation.
Lutein content was found in gut, fat body, epidermis and haemolymph of I.io. Lutein incorporation into cuticle occurred within 1.5 days of the pupal moult when the cuticle was not yet fully sclerotized. Lutein content is significantly higher in cuticle of yellow pupae than of black ones.  相似文献   

3.
A novel optical activity of lutein was studied in dodecyltrimethylammonium bromide (DTAB) solution by the measurement of circular dichroism and absorbance. The surfactant was found to bring about the circular dichroism activity of the lutein below the critical micelle concentration (CMC) in a different way from that by sodium dodecyl sulfate (SDS). This phenomenon was interpreted by the card-pack model of the lutein aggregate in which lutein molecule was slightly shifted each other. The above optical activity abruptly became strong just before the CMC of DTAB. This seems to correspond to the transition from the polymeric aggregate of the lutein to the oligomeric one. Such an optical activity disappeared beyond the CMC on the incorporation of the lutein molecules into the surfactant micelles. The molar binding ratios of DTAB to the lutein were determined to be 130 to 210 on the basis of the lutein concentration dependence of the DTAB concentration showing the arbitrary ellipticity. These ratios were clearly larger than those for SDS. On the other hand, filtration measurement showed that the size of the lutein-DTAB complex was larger than 2 μm in diameter. These phenomena were discussed assuming the possible model of the aggregate as a comparative study of the anionic and cationic surfactants causing the novel optical activity of this aggregate.  相似文献   

4.
Lutein, a member of the xanthophyll family of carotenoids, suppressed IL-1-induced osteoclast differentiation and bone resorption. The survival of mature osteoclasts was also suppressed by lutein in cultures. When lutein was added to the cultures of osteoblasts, lutein enhanced the formation of mineralized bone nodules by elevating BMP2 expression and inhibiting sclerostin expression. Lutein may be beneficial for bone health.  相似文献   

5.
Lutein had novel spectroscopic properties in the visible region on the formation of complexes with several proteins [S. Takagi, M. Shiroishi and T. Takagi, Agric. Biol. Chem., 44, 2111 (1980)]. The effects of pH, molar ratio of lutein to protein, and the variety of protein on the phenomenon was studied. The phenomenon was insensitive to these parameters. Solubilization into micelles of deoxycholate was found to induce no optical activity in contrast to bilirubin by Perrin et al. [J. H. Perrin and M. Wilsey, Chem. Commun., 769 (1971)].

It is strongly suggested in this paper that the observed changes in spectroscopic properties including the novel one in circular dichroism come chiefly from mutual interactions between lutein molecules in the complexes. Changes in spectroscopic properties comparable to those for lutein were observed with β-cryptoxanthin but not with canthaxanthin or ethyl β-apo-8'-carotenoate, although the latter two formed complexes with ovalbumin. The presence of at least one asymmetric carbon atom in the ionone rings seems to be essential for the novel spectro-scopic changes to be observed. The possible correlation of the trans-cis conformational change in the conjugated double bond system was discussed. The optical activity was presumed to come from the intermolecular dipole-dipole coupling with the chiral spatial orientation.  相似文献   

6.
Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.  相似文献   

7.
The aim of the investigation was to assess a stable isotope method for determining the relative bioavailability of food-derived lutein in humans. Subjects were administered a single dose of deuterium-labeled carotenoids from intrinsically labeled spinach or collard green; 10 mL blood samples were drawn at various time points over a 34 days period. The vegetables had been hydroponically grown using 25 atom-% deuterated water. Lutein molecules in the vegetables were partially deuterated with a highest abundance isotopomer at M(0) + 8 (unlabeled molecular mass, M(0,) plus 8 additional mass units from 8 deuterium atoms in the molecules). This allowed labeled lutein to be distinguished from endogenous lutein in serum samples after consuming the labeled meal. The presence of labeled lutein in the circulation was determined by liquid chromatography-mass spectrometry (LC/MS) equipped with an atmospheric pressure chemical ionization (APCI) interface. The quantification of the labeled lutein in serum samples enabled the calculation of the enrichment for each time point after the dose; these values were plotted vs. time to generate absorption-clearance curves for each of the subjects. Area under the curve analyses of four different subjects (integrated over 29 days) yielded serum lutein responses of 128, 145, 149, and 262 microg-day/mg dietary lutein, following an acute dose of spinach containing 15.4, 18.8, 18.8 and 9.8 mg labeled lutein, respectively. This technique will facilitate the study of lutein bioavailability from different foods of diverse carotenoid composition and/or following various food preparation procedures.  相似文献   

8.
Cataracts and ocular disease are common lesions of marine mammals in zoological collections. Lutein, an oxygenated carotenoid, may have therapeutic or prophylactic effects on ocular disorder. Therefore, this study examined the ability of marine mammals to absorb dietary lutein. Two preliminary trials examined lutein in two forms (beadlet or ester) in a small sample size of marine mammals representing pinnipeds and cetaceans. Lutein was fed daily in tablets providing 0.89–3.6 mg lutein/kg body weight0.75 per day for 15 days to 2 years. A third study was conducted using lutein beadlet fed at 3.6 mg lutein/kg body weight0.75 per day for 15–21 days. Blood was analyzed for lutein pre‐ and postsupplementation. In the preliminary trials, lutein beadlet was observed to result in greater blood lutein levels than lutein esters, and cetaceans had more noticeable responses than pinnipeds. In Study 3, serum lutein and zeaxanthin increased postsupplementation in beluga whales (P < 0.05), and serum lutein tended to increase postsupplementation in dolphins (P < 0.10), but little change was seen in serum lutein in pinnipeds or manatee. Opportunistic retinal samples demonstrated some detectable lutein in the retina of a dolphin and several harp seals. The lutein levels in dolphins after supplementation are similar to those reported in free‐ranging animals. Ocular lutein in harp seals demonstrates that ocular deposition occurs despite low circulating lutein levels. Zoo Biol. 32:316–323, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
ABSTRACT

Lutein is poorly absorbed owing to their high hydrophobicity and crystallinity. This double-blind crossover trial involved eight healthy males who were administrated capsules containing either a lutein water-soluble formulation or a lutein oil suspension for 8 days. In the formulation group, plasma and erythrocytes lutein concentrations and baseline-corrected AUC were two-fold higher than those in the oil suspension group.  相似文献   

11.
Lutein effect on retina and hippocampus of diabetic mice   总被引:4,自引:0,他引:4  
Oxidative stress markers and functional tests were studied to confirm early biochemical and functional changes in retina and hippocampus of diabetic mice. The effects of lutein treatment were also tested. Mice were induced diabetic by alloxan injection and divided into subgroups: control, control+lutein, diabetic, diabetic+lutein, diabetic+insulin, and diabetic+insulin+lutein. Treatments started on Day 4 after alloxan injection and animals were sacrificed on Day 14. Malondialdehyde and glutathione concentrations and glutathione peroxidase activity were measured as oxidative stress markers. The following functional tests for retina and hippocampus were performed: electroretinogram and Morris water maze test. NFkappaB activity was also measured. Oxidative stress and NFkappaB activity increase in the retina and hippocampus after 15 days of diabetes. Impairment of the electroretinogram and a correlation between latencies of the water maze test and glycated hemoglobin (HbA1c) levels were observed. Lutein prevented all these changes even under hyperglycemic conditions. Retina appears to be affected earlier than hippocampus by diabetes-induced oxidative stress. Although a proper glycemic control is desirable in preventing the development of diabetic complications, it is not sufficient to prevent them completely. Lutein could be an appropriate coadjuvant treatment for the changes observed in this study.  相似文献   

12.
Metabolites of lutein are highly concentrated in the human macula and are known to provide protection against age-related macular degeneration. The aim of this investigation was to characterize the in vitro oxidation products of lutein obtained through photo-oxidation and to compare them with biologically transformed dietary lutein in intestine, plasma, liver, and eyes of rats. In vivo studies involved feeding rats a diet devoid of lutein for 2 weeks to induce deficiency. Rats were divided into two equal groups (n=6/group) and received either micellar lutein by gavage for 10 days or diet supplemented with fenugreek leaves as a lutein source for 4 weeks. Lutein metabolites/oxidation products obtained from in vivo and in vitro studies were characterized by HPLC and LC-MS (APCI) techniques to elucidate their structure. The characteristic fragmented ions resulting from photo-oxidation of lutein were identified as 523 (M(+)+H(+)-3CH(3)), 476 (M(+)+H(+)-6CH(3)), and 551 (M(+)+H(+)-H(2)O). In the eyes, the fragmented molecules resulting from lutein were 13-Z lutein, 13'-Z lutein, 13-Z zeaxanthin, all-E zeaxanthin, 9-Z lutein, 9'-Z lutein, and 3'-oxolutein. Epoxycarotenoids were identified in liver and plasma, whereas anhydrolutein was identified in intestine. This study emphasizes the essentiality of dietary lutein to maintain its status in the retina.  相似文献   

13.
Lutein, a dietary carotenoid, is a well known antioxidant. The major source of this carotenoid in humans is diet. We report here the presence of lutein, a dietary carotenoid in several guinea pig tissues (in decreasing order: liver>spleen>lung>testis>kidney>plasma>eye but not in white adipose tissue). The presence of lutein in lung and other tissues may be significant in term of its antioxidant capacity of these organs.  相似文献   

14.
Lutein is present in the human retina and lens, where it plays a protective role. As lutein is associated with the lipid matrix of biomembranes, the role depends on its membrane location. Experimental studies predicted two orientations of lutein in a phosphatidylcholine (PC) bilayer: vertical and horizontal. Using a molecular dynamics simulation, we observed, in two different PC bilayers, both orientations of lutein, and in each bilayer, a single change from vertical to horizontal orientation or vice versa. Both orientations were stabilized by hydrogen bonding of lutein OH groups with mainly carbonyl but also phosphate oxygen atoms of PC.  相似文献   

15.
Lutein is a carotenoid with a purported role in protecting eyes from oxidative stress, particularly the high‐energy photons of blue light. Statistical optimization was performed to growth media that supports a higher production of lutein by heterotrophically cultivated Chlorella vulgaris. The effect of media composition of C. vulgaris on lutein was examined using fractional factorial design (FFD) and central composite design (CCD). The results indicated that the presence of magnesium sulfate, EDTA‐2Na, and trace metal solution significantly affected lutein production. The optimum concentrations for lutein production were found to be 0.34 g/L, 0.06 g/L, and 0.4 mL/L for MgSO4·7H2O, EDTA‐2Na, and trace metal solution, respectively. These values were validated using a 5‐L jar fermenter. Lutein concentration was increased by almost 80% (139.64 ± 12.88 mg/L to 252.75 ± 12.92 mg/L) after 4 days. Moreover, the lutein concentration was not reduced as the cultivation was scaled up to 25,000 L (260.55 ± 3.23 mg/L) and 240,000 L (263.13 ± 2.72 mg/L). These observations suggest C. vulgaris as a potential lutein source. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:736–743, 2014  相似文献   

16.
A new potentially antioxidant compound, spin-labelled lutein (SL-lut), was synthesized and incorporated into egg yolk phosphatidylcholine (EYPC) liposome membrane. The approximate location of nitroxide free radical groups of SL-lut was determined based on electron paramagnetic resonance (EPR) spectra. Then the ability of SL-lut to protect EYPC liposomes against lipid peroxidation (LPO) was compared to the antioxidant effects of lutein and a nitroxide spin label 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (3-CP). Two free radical generation systems were used—a thermal decomposition of 2,2′-azobis (2,4 dimethyl-valeronitrile) (AMVN) and a modified Fenton reaction using ferric-8-hydroxyquinoline (Fe(HQ)3). Determination of the amount of thiobarbituric acid reactive species (TBARS) was used as a measure of LPO. SL-lut was the most powerful antioxidant, reducing LPO by about 6-times in AMVN-treated liposomes and 7-times in Fe(HQ)3-treated liposomes. Lutein alone gave only a moderate protection in both systems, while 3-CP was as efficient as SL-lut in the presence of AMVN, but not efficient whatsoever in the presence of Fe(HQ)3. The results suggest that a nitroxide part of SL-lut plays an important role in enhancing the antioxidant activity of lutein and makes SL-lut a powerful antioxidant efficient under different conditions.  相似文献   

17.
A new potentially antioxidant compound, spin-labelled lutein (SL-lut), was synthesized and incorporated into egg yolk phosphatidylcholine (EYPC) liposome membrane. The approximate location of nitroxide free radical groups of SL-lut was determined based on electron paramagnetic resonance (EPR) spectra. Then the ability of SL-lut to protect EYPC liposomes against lipid peroxidation (LPO) was compared to the antioxidant effects of lutein and a nitroxide spin label 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (3-CP). Two free radical generation systems were used—a thermal decomposition of 2,2'-azobis (2,4 dimethyl-valeronitrile) (AMVN) and a modified Fenton reaction using ferric-8-hydroxyquinoline (Fe(HQ)3). Determination of the amount of thiobarbituric acid reactive species (TBARS) was used as a measure of LPO. SL-lut was the most powerful antioxidant, reducing LPO by about 6-times in AMVN-treated liposomes and 7-times in Fe(HQ)3-treated liposomes. Lutein alone gave only a moderate protection in both systems, while 3-CP was as efficient as SL-lut in the presence of AMVN, but not efficient whatsoever in the presence of Fe(HQ)3. The results suggest that a nitroxide part of SL-lut plays an important role in enhancing the antioxidant activity of lutein and makes SL-lut a powerful antioxidant efficient under different conditions.  相似文献   

18.
Lutein, a xanthophyll of a carotenoid, is anticipated as a therapeutic product to prevent human eye diseases. However, its biological mechanism is still unclear. Here, we show the molecular mechanism of lutein's effect to reduce photodamage of the retina. We analyzed the light-exposed retinas of Balb/c mice given lutein-supplemented or normal diet. Visual function was measured by electroretinogram, and histological changes were observed. Immunohistochemical and immunoblot analyses were performed to analyze molecular mechanism. The reactive oxygen species induced in the retina was evaluated by fluorescent probes. In the mice after light exposure, reduction of a-wave and b-wave amplitudes in electroretinogram, indicating visual impairment, and thinning of the photoreceptor cell layer owing to apoptosis were both attenuated by lutein diet. Interestingly, γ-H2AX, a marker for double-strand breaks (DSBs) in DNA, was up-regulated in the photoreceptor cells after light exposure, but this increase was attenuated by lutein diet, suggesting that DSBs caused by photodamage contributed to the photoreceptor cell death and that this change was suppressed by lutein. Moreover, the expression of eyes absent (EYA), which promotes DNA repair and cell survival, was significantly up-regulated with lutein diet in the light-exposed retina. Therefore, lutein induced EYA for DNA repair, which could suppress DNA damage and photoreceptor cell apoptosis. Lutein reduced light-induced oxidative stress in the retina, which might contribute to promote DNA repair. The lutein-supplemented diet attenuated light-induced visual impairment by protecting the photoreceptor cells' DNA.  相似文献   

19.
Carotenoid lutein was evaluated for its antioxidant potential both in vitro and in vivo. Lutein was found to scavenge superoxide radicals, hydroxyl radicals and inhibited in vitro lipid peroxidation. Concentrations needed for 50% inhibition (IC50) were 21, 1.75 and 2.2 microg/mL respectively. It scavenged 2,2-diphenyl-1-picryl hydrazyl (IC50 35 microg/mL) and nitric oxide radicals (IC50 3.8 microg/mL) while 2,2-azobis-3-ethylbenzthiozoline-6-sulfonic acid radicals were inhibited at higher concentration. Ferric reducing power (50%) of lutein was found to be equal 0.3 micromols/mL of FeSO4.7H2O. Its oral administration inhibited superoxide generation in macrophages in vivo by 34.18, 64.32 and 70.22% at doses of 50, 100 and 250 mg/kg body weight. The oral administration of lutein in mice for 1 month significantly increased the activity of catalase, superoxide dismutase, glutathione reductase and glutathione in blood and liver while the activity of glutathione peroxidase and glutathione-S-transferase were found to be increased in the liver tissue. Implication of these results in terms of its role in reducing degenerative diseases is discussed.  相似文献   

20.
Lutein is selectively taken up by the primate retina and plays an important role as a filter for harmful blue light and as an antioxidant. Recent studies have shown that lutein has systemic anti-inflammatory properties. Dietary lutein has been associated with reduced circulating levels of inflammatory biomarkers such as CRP and sICAM. Whether lutein also affects activation of the complement system has not yet been addressed and was the purpose of the study described here. Seventy-two subjects with signs of early macular degeneration were randomly assigned to receive either a 10 mg lutein supplement or a placebo during one year. EDTA blood samples were collected at 0, 4, 8 and 12 months. Complement factor D (CFD), a rate limiting component of the alternative pathway of complement activation and the complement activation products C5a and C3d were determined in the plasma samples by ELISA. A significant 0.11 µg/ml monthly decrease in plasma CFD concentration was observed in the lutein group (p<0.001), resulting in a 51% decrease from 2.3 µg/ml at baseline to 1.0 µg/ml at 12 months. The C5a concentration showed a significant 0.063ng/ml monthly decrease in the lutein group (p<0.001) resulting in a 36% decrease from 2.2ng/ml at baseline to 1.6ng/ml at 12 months. The C3d concentration showed a significant 0.19µg/ml monthly decrease in the lutein group (p=0.004) that gave rise to a 9% decrease from 15.4µg/ml at baseline to 14.4µg/ml at 12 months. In the placebo group we found a significant 0.04 µg/ml monthly decrease in plasma CFD concentration, whereas no changes were observed for C5a and C3d. Lutein supplementation markedly decreases circulating levels of the complement factors CFD, C5a and C3d levels, which might allow a simple method to control this inflammatory pathway of the innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号