首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asymmetric epoxidation of (±)-methyl (2Z,4E)-1′,4′-dihydroxy-α-ionylideneacetates is described for the preparation of chiral abscisic acid. A conventional Shapless kinetic resolution of (±)-1′,4′-cis-dihydroxyacetate with diethyl l-tartarate and then two simple steps of conversion gave (S)-abscisic acid, which was also obtained by the combination of (±)-1′,4′-trans-dihydroxyacetate with diethyl d-tartarte. Finally, (S)-abscisic acid was obtained in a 25% overall yield from the racemic mixture.  相似文献   

2.
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

3.
2-(4-Isobutylphenyl)-propionic acid, which is known to have a high anti-inflammatory activity and has widely been used in the treatment of diseases caused by inflammation, such as rheumatism, was synthesized from methyl 3-methyl-3-(4-isobutylphenyl)-glycidate, via methyl 2-hydroxy-3-(4-isobutylphenyl)-3-butenoate (VI) in four steps.  相似文献   

4.
(R)-[2-14C]-Mevalonic acid (MVA) lactone was incorporated into (-)-4′-hydroxy-y-ionylideneacetic acid (4?-hydroxy-y-acid), which was first isolated from the culture broth of Cercospora cruenta. 4?-Hydroxy-γ-acid was then metabolized to (+)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid and (+)-(2Z,4E)-′14′-dihydroxy-γ-ionylideneacetic acid. The latter was converted to (+)-abscisic acid (ABA) with a high incorporation ratio by the fungus.  相似文献   

5.
The reference standards methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate (5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-methoxybenzamide (5c), and their corresponding desmethylated precursors 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoic acid (6a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-hydroxybenzamide (6b), were synthesized from 5-amino-2,2-difluoro-1,3-benzodioxole and 3-substituted benzoic acids in 5 and 6 steps with 33% and 11%, 30% and 7% overall chemical yield, respectively. Carbon-11-labeled casein kinase 1 (CK1) inhibitors, [11C]methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate ([11C]5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-[11C]methoxybenzamide ([11C]5c), were prepared from their O-desmethylated precursor 6a or 6b with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–45% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370–740?GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   

6.
(±)-(2Z,4E)-α-Ionylideneacetic acid (2) was enantioselectively oxidized to (?)-(l′S)-(2Z,4E)-4′-hydroxy-α-ionylideneacetic acid (3), (+)-(1′R)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid (4) and (+)-abscisic acid (ABA) (1) by Cercospora cruenta IFO 6164, which can produce (+)-ABA and (+)-4′-oxo-α-acid 4. This metabolism was confirmed by the incorporation of radioactivity from (±)-(2-14C)-(2Z,4E)-α-acid 2 into three metabolites. (?)-4′-Hydroxy-α-acid 3 was a diastereoisomeric mixture consisting of major 1′,4′-trance-4′-hydroxy-α-acid 3a and minor 1′,4′-cis-4′-hydroxy-α-acid 3b. These structures, 3a and 3b, were confirmed by 13C-NMR and 1H-NMR analysis. Also, the enantioselectivity of the microbial oxidation was reexamined by using optically pure α-acid (+)-2 and (?)-2, as the substrates.  相似文献   

7.
A bacterial arylmalonate decarboxylase (AMDase) catalyzes asymmetric decarboxylation of unnatural arylmalonates to produce optically pure (R)-arylcarboxylates without the addition of cofactors. Previously, we designed an AMDase variant G74C/C188S that displays totally inverted enantioselectivity. However, the variant showed a 20,000-fold reduction in activity compared with the wild-type AMDase. Further studies have demonstrated that iterative saturation mutagenesis targeting the active site residues in a hydrophobic pocket of G74C/C188S leads to considerable improvement in activity where all positive variants harbor only hydrophobic substitutions. In this study, simultaneous saturation mutagenesis with a restricted set of amino acids at each position was applied to further heighten the activity of the (S)-selective AMDase variant toward α-methyl-α-phenylmalonate. The best variant (V43I/G74C/A125P/V156L/M159L/C188G) showed 9,500-fold greater catalytic efficiency kcat/Km than that of G74C/C188S. Notably, a high level of decarboxylation of α-(4-isobutylphenyl)-α-methylmalonate by the sextuple variant produced optically pure (S)-ibuprofen, an analgesic compound which showed 2.5-fold greater activity than the (R)-selective wild-type AMDase.  相似文献   

8.
Several compounds having the basic α-ionylideneacetic acid structure were tested in Cercospora rosicola resuspensions. At 100 μm, all the compounds inhibited abscisic acid (ABA) biosynthesis. Time studies with unlabelled and deuterated (2Z,4E)- and (2E,4E)-α-ionylideneacetic acids showed rapid conversions into both (2Z,4E)- and (2E,4E)-4′-keto-α-ionylideneacetic acids as major products. Incorporation of the label into ABA was specific for the 2Z,4E-isomer. Minor products, identified by GC-MS, were (2Z,4E)- and (2E,4E)-4′-hydroxy-α-ionylideneacetic acids and (2Z,4E)-1′-hydroxy-α-ionylideneacetic acid. The conversion to (2Z,4E)-l′-hydroxy-α-ionylideneacetic acid has not been previously reported and was specific for the 2Z,4E-isomer. A time study for the conversion of methyl esters of [2H3]-(2Z,4E)- and [2H3]-(2E,4E)-4′-keto-α-ionylideneacetates showed a slow introduction of the l′-hydroxyl group and specificity for 2Z,4E-isomer. Conversion of the ethyl esters of (2Z,4E)- and (2E,4E)-l′-hydroxy-α-ionylideneacetates into the ethyl esters of both ABA and (2E,4E)-ABA demonstrated that ABA can be formed by oxidation of the 4′-position after the insertion of the 1′-hydroxy group. The ethyl 1′-hydroxy acids were also isomerized to the corresponding ethyl (2Z,4E)- and ethyl (2E,4E)-3′-hydroxy-β-ionylideneacetates. Ethyl (2Z,4E)-1′-hydroxy acid also gave small amounts of ethyl l′,4′-trans-diol of ABA. These results suggest that ABA may be formed through a (2Z,4E)-1′-hydroxy-α-ionylidene-type intermediate in addition to the previously proposed route through (2Z,4E)-4′-keto-α-ionylideneacetic acid.  相似文献   

9.
《Biomarkers》2013,18(8):547-553
Tobacco-specific N-nitrosamines (TSNA) include 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N′-nitrosonornicotine (NNN), N′-nitrosoanabasine (NAB) and N′-nitrosoanatabine (NAT) and are found in tobacco and tobacco smoke. TSNA are of interest for biomonitoring of tobacco-smoke exposure as they are associated with carcinogenesis. Both NNK and NNN are classified by IARC as Group 1 carcinogens. Samples of 24?h urine collections (n?=?108) were analysed from smokers and non-smokers, using a newly developed and validated LC-MS/MS method for determining total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the major metabolite of NNK), and total NNN, NAB and NAT. TSNA levels in smokers’ urine were significantly higher than in non-smokers. In smokers, urinary excretion of total TSNA correlated significantly (r?>?0.5) with markers of smoking dose, such as daily cigarette consumption, salivary cotinine and urinary nicotine equivalents and increased with the ISO tar yield of cigarettes smoked. The correlation between urinary total NNN and the smoking dose was weaker (r?=?0.4–0.5). In conclusion, this new method is suitable for assessing tobacco use-related exposure to NNK, NNN, NAB and NAT.  相似文献   

10.
When adenosine (Ia) was allowed to react with 2-methylthio-4H-l,3,2-benzodioxaphosphorin-2-oxide (MTBO) (II), a new phosphorylating agent, in the presence of cyclohexylamine, adenosine 5′-S-methyl phosphorothiolate (IVa) and adenosine 2′: 3′-cyclic phosphate (Va) were obtained.

Ribonucleoside 5′-S-methyl phosphorothiolates (IV) were selectively synthesized directly from borate complexes of ribonucleosides (VI) and MTBO in the presence of cyclohexylamine, followed by removal of metaboric acid by co-distillation with methanol, in 68~86% yields.

Under anhydrous conditions, the phosphorothiolates (IV) were cyclized to give ribonucleoside 3′: 5′-cyclic phosphates (X) by iodine oxidation. Five 3′: 5′-cyclic nucleotides including cyclic AMP were synthesized by this procedure in 38~64% yields after purification.  相似文献   

11.
A general synthetic method for Fmoc-protected monomers of all four diastereomeric aminoethyl peptide nucleic acid (aepPNA) has been developed. The key reaction is the coupling of nucleobase-modified proline derivatives and Fmoc-protected aminoacetaldehyde by reductive alkylation. Oligomerization of the aepPNAs up to 10mer was achieved by Fmoc-solid phase peptide synthesis methodology. Preliminary binding studies of these aepPNA oligomers with nucleic acids suggested that the “cis-” homothymine aepPNA decamers with (2′R,4′R) and (2′S,4′S) configurations can bind, albeit with slow kinetics, to their complementary RNA [poly(adenylic acid)] but not to the complementary DNA [poly(deoxyadenylic acid)]. On the other hand, the trans homothymine aepPNA decamers with (2′R,4′S) and (2′S,4′R) configurations failed to form stable hybrid with poly(adenylic acid) and poly(deoxyadenylic acid). No hybrid formation could be observed between a mixed-base (2′R,4′R)-aepPNA decamer with DNA and RNA in both antiparallel and parallel orientations.  相似文献   

12.
[2–14C]-(2Z,4E)-γ-Ionylideneethanol and [2–14C]-(2Z,4E)-γ-ionylideneacetic acid were converted by Cercospora cruenta to [2–14C]-(2Z,4E)-1′,4′-dihydroxy-γ-ionylideneacetic acid and [2-14C]-(2Z,4E)-4′-hydroxy-γ-ionylideneacetic acid, which are intermediates of ABA biosynthesis in C. cruenta.  相似文献   

13.
Coicis semen (=the hulled seed of Coix lacryma‐jobi L. var. ma‐yuen (Rom.Caill. ) Stapf ; Gramineae), commonly known as adlay and Job's tears, is widely used in traditional medicine and as a nutritious food. Bioassay‐guided fractionation of the AcOEt fraction of unhulled adlays, using measurement of nitric oxide (NO) production on lipopolysaccharide (LPS)‐stimulated RAW 264.7 macrophage cells, led to the isolation and identification of two new stereoisomers, (+)‐(7′S,8′R,7″S,8″R)‐guaiacylglycerol βO‐4′‐dihydrodisinapyl ether ( 1 ) and (+)‐(7′S,8′R,7″R,8″R)‐guaiacylglycerol βO‐4′‐dihydrodisinapyl ether ( 2 ), together with six known compounds, 3 – 8 . Compounds 3 and 4 exhibited inhibitory activities on LPS‐induced NO production with IC50 values of 1.4 and 3.7 μM , respectively, and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2) protein expressions in RAW 264.7 macrophage cells. Simple high‐performance liquid chromatography with ultraviolet detection (HPLC/UV) was used to compare the AcOEt fraction of unhulled adlays responsible for the anti‐inflammatory activity in RAW 264.7 cells and the inactive AcOEt fraction of hulled adlays.  相似文献   

14.
Nineteen carotenoids were identified in extracts of petals of orange- and yellow-flowered cultivars of calendula (Calendula officinalis L.). Ten carotenoids were unique to orange-flowered cultivars. The UV–vis absorption maxima of these ten carotenoids were at longer wavelengths than that of flavoxanthin, the main carotenoid of calendula petals, and it is clear that these carotenoids are responsible for the orange color of the petals. Six carotenoids had a cis structure at C-5 (C-5′), and it is conceivable that these (5Z)-carotenoids are enzymatically isomerized at C-5 in a pathway that diverges from the main carotenoid biosynthesis pathway. Among them, (5Z,9Z)-lycopene (1), (5Z,9Z,5′Z,9′Z)-lycopene (3), (5′Z)-γ-carotene (4), and (5′Z,9′Z)-rubixanthin (5) has never before been identified. Additionally, (5Z,9Z,5′Z)-lycopene (2) has been reported only as a synthesized compound.  相似文献   

15.
Resolution of (R,S)-ibuprofen (2-(4-isobutylphenyl)propionic acid) enantiomers by esterification reaction with 1-propanol in different organic solvents was studied using native Aspergillus niger lipase. The main variables controlling the process (enzyme concentration and 1-propanol:ibuprofen molar ratio) have been optimized using response surface methodology based on a five-level, two-variable central composite rotatable design, in which the selected objective function was enantioselectivity. This enzyme preparation showed preferentially catalyzes the esterification of R(−)-ibuprofen, and under optimum conditions (7% w/v of enzyme and molar ratio of 2.41:1) the enantiomeric excess of active S(+)-ibuprofen and total conversion values were 79.1 and 48.0%, respectively, and the E-value was 32, after 168 h of reaction in isooctane.  相似文献   

16.
Synthesis of (±)-trans-chrysanthemic acid from (±)-1′-hydroxydihydro-trans-chrysanthemic acid by the dehydration with p-toluene-sulfonic acid was attempted. However, the attempt was found to be unsuccessful giving a compound believed to be methyl methyl 2,6 dimethylhepta-3.6-diene-5-carboxylate upon dehydration.

A cleavage upon cyclopropane ring was confirmed by deriving the acid obtained by the hydrolysis of the above ester to already known 2,6-dimethyl-heptane-5-carboxylic acid.

Analogous mode of dehydration and cleavage upon the ester of (±)-2,2-dimethyl-3-trans-hydroxylbenzyl-cyclopropane-l-carboxylic acid was also observed to give 1-phenyl-4-methyl-penta-1,3-diene-3-carboxylic acid. On the other hand, (±)-trans-caronic acid being derived to (±)-1′-oxo-2′-hydroxy-dihydro-trans-chrysanthemic acid, the synthesis of (±)-trans-chrysanthemic acid from (±)-trans-caronic acid became possible using (±)-1′-oxo-2′-hydroxy-dihydro-trans-chrysanthemic acid as a relay substance.  相似文献   

17.
Summary

Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (5–8-BendiFA), (Z)-β-(4-[(E)-2-carboxyvinyl]-2-methoxy-phenoxy)-4-hydroxy-3-methoxycinnamic acid (8-O-4-diFA) and (E,E)-4,4′-dihydroxy-5,5′-dimethoxy-3,3′-bicinnamic acid (5–5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro-naphthalene-2,3-dicarboxylic acid (8–8-diFA cyclic form) and 4,4′-dihydroxy-3,3′-dimethoxy-β,β'-bicinnamic acid (8–8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: λmax: 323 nm, λmin: 258 nm, ελmax (M?1cm?1): 24800 ± 2100 and ε280 (M?1cm?1): 19700 ± 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.  相似文献   

18.
Hydrochloric acid treatment of methyl 3-(4-isobutylphenyl)-3-methylglycidate and methyl 2-hydroxy-3-(4-isobutylphenyl)-3-butenoate, a rearrangement product of the former, in acetic acid gave 3-(4-isobutylphenyl)-3-methylpyruvic acid and 2-(4-isobutylphenyl)-pro-panal. The same treatment of 2-hydroxy-3-(4-isobutylphenyl)-3-butenoic acid gave 2-(4-isobutylphenyl)-propanal. Both 3-(4-isobutylphenyl)-3-methylpyruvic acid and 2-(4-iso-butylphenyl)-propanal were oxidized to 2-(4-isobutylphenyl)-propionic acid.  相似文献   

19.
A total synthesis of optically active pyriculol is described. The Wittig reaction between an aldehyde 19 and a triphenylphosphonium ylide 12 gave an intermediate 20. Successive treatment of 20 with p-toluenesulfonic acid, active manganese dioxide, and potassium carbonate gave (3′R,4′S)-pyriculol (23), which was identical with natural pyriculol (1) in all respects. From this synthesis, the absolute stereochemistry of pyriculol (1) was determined to be 2-[(3′R,4′S)-3′,4′-dihydroxy- (1′E,5′E)-1′,5′-heptadienyl]-6-hydroxybenzaldehyde  相似文献   

20.
4-(2′-Carboxyphenyl)-4-oxobutyric acid (6) has been detected in cuttings of Impatiens balsamina. It is labelled under conditions where activity from U-14C-glutamate is incorporated effectively into lawsone (1). 3-(2′-Carboxyphenyl)-3-oxopropionic acid (7) has also been encountered in the cuttings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号