首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meso-(1245/36)-1,2,4,5,6-pentachloro-3-methylthiocyclohexane, and (124/356)-1,2,4,5,6-pentachloro-3-methylthio and ethylthiocyclohexanes were prepared from (1234/56)-1,4,5,6-tetrachloro-2,3-epoxycyclohexane (α-BTC cis-epoxide).  相似文献   

2.
dl-(1245/36)-2,3,4,5,6-Pentachlorocyclohexanecarbonitrile was synthesized from (1234/ 56)-1,4,5,6-tetrachloro-2,3-epoxycyclohexane (α-BTC cis-epoxide). dl-(1245/36)-2,3,4,5,6-Pentachloro-1-methylcyclohexane was synthesized from the nitrile via dl-(1245/36)-2,3,4,5,6-pentachlorocyclohexylmethanol, the structure of which was confirmed by PMR spectroscopy using spin decoupling techniques and the shift reagent, Eu(DPM)3. This series of compounds was shown to have the same configuration as γ-BHC. The conformational equilibrium of these compounds is discussed. dl-(1245/36)-2,3,5,6-Tetrachloro-1,4-dimethyl-cyclohexane was synthesized by a stepwise route involving a Diels-Alder reaction of trans,trans-hexadiene-2,4 with maleic anhydride.  相似文献   

3.
Two diastereomers of 6-bromo-1, 2, 3, 4, 5-pentachlorocyclohexane were synthesized from the dl (36/45)-diastereomer of 3, 4, 5, 6-tetrachlorocyclohexene (α-BTC) and the dl (346/5)-diastereomer (γ-BTC) by several stepwise routes. Both of these new products were shown to have the configuration of lindane by NMR studies at 300 MHz and by the synthetic routes. Three diastereomers of 6-bromo-3, 4, 5-trichlorocyclohexene were also prepared and the configurations determined partly by means of 300 MHz NMR.  相似文献   

4.
Two novel chlorinated fluoresceins 2′,4′,5′,7′-tetrachloro-6-(5-carboxypentyl)-4,7-dichloro fluorescein succinimidyl ester (1G) and 2′,4′,5′,7′-tetrachloro-6-(3-carboxypropyl)-4,7-dichlorofluorescein succinimidyl ester (2G) were synthesized as fluorescent probes for labeling proteins. Structures of target compounds and intermediates were determined via IR, MS, 1H NMR and element analysis. The investigation in immunofluorescence histochemistry showed them had strong fluorescence, high photostability and good biocompatibility.  相似文献   

5.
dl-(1,3/2)-3-Acetamido-1,2-di-O-benzylcyclohex-4-enediol (IIIa) and dl-(1,3/4)-1-acetamido-3,4-di-O-benzylcyclohex-5-enediol (IIIb) were synthesized from dl-trans-1,2-di-O-benzylcyclohex-3-enediol (I) via the corresponding azide derivatives (IIa-b) prepared by bromination and subsequent treatment with sodium azide in N,N-dimethylformamide. Compounds (IIIa and IIIb) were converted into a variety of deoxyinosamine and deoxyinosadiamine derivatives via epoxides (VIII and IX) or by cis-hydroxylation with osmium tetroxide. Hexaacetyl-rac-inosamine-1 (XVIIIc) was synthesized from dl-(1,3,4/2,5)-3-acetamido-1,2-di-O-benzyl-5-bromocyclohexanetriol (VIa) via conduramine derivatives (XVIIa-c). Conformationai analysis of partially O-benzylated aminocyclitol derivatives were studied by means of NMR spectroscopy.  相似文献   

6.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

7.
The effects of three tetrachlorobiphenylols [2′,3′,4′,5′-tetrachloro-2-biphenylol (1); 2′,3′,4′,5′-tetrachloro-4-biphenylol (2); and 2′,3′,4′,5′-tetrachloro-3-biphenylol (3)]; three monochlorobiphenylols [5-chloro-2-biphenylol (5), 3-chloro-2-biphenylol (6); and 2-chloro-4-biphenylol (7)] and a tetrachlorobiphenyldiol [3,3′,5,5′-tetrachloro-4,4′-biphenyldiol (4) on respiration, adenosine triphosphatase (ATPase)] activity, and swelling in isolated mouse liver mitochondria have been investigated. Tetrachlorobiphenylols (13) and the tetrachlorobiphenyldiol (4) inhibited state-3 respiration in a concentration-dependent manner with succinate as substrate (flavin adenine dinucleotide [FAD]-linked) and the tetrachlorobiphenyldiol (4) caused a more pronounced inhibitory effect on state-3 respiration than the other congeners. The monochlorobiphenylols 57 were less active as inhibitors of state-3 mitochondrial respiration and significant effects were observed only at higher concentration (≥0.4 μM). However, in the presence of the nicotinamide adenine dinucleotide (NAD)-linked substrates (glutamate plus malate), hydroxylated PCBs (17) significantly inhibited mitochondrial state-3 respiration in a concentration-dependent manner. Compounds 5, 6, and 7 uncoupled mitochondrial oxidative phosphorylation only in the presence of FAD-linked substrate as evidenced by increased oxygen consumption during state-4 respiratory transition, stimulating ATPase activity, releasing oligomycin-inhibited respiration, and inducing mitochondrial swelling (5, 6, and 7). Tetrachlorobiphenylols 1, 2, and 3 had no effect on mitochondrial ATPase activity while the tetrachlorobiphenyldiol, 4, decreased the enzyme activity. The possible inhibitory site of electron transport by these compounds and their toxicologic significance is discussed.  相似文献   

8.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

9.
Starting from D-seco derivatives of 5-androstene 1-3, the D-homo lactones, 4 and 5, were synthesized. By the Oppenauer oxidation and/or by dehydration of 4 and 5 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), the corresponding D-lactones 6-12 were obtained. The structures of 6 and 10 were unambiguously proved by the appropriate X-ray structural analysis. Anti-aromatase assay showed that tested compounds possess inhibition potency, however, two to four times smaller (IC50 from 0.2 to 0.7 microM, respectively) in comparison to aminoglutethimide (AG).  相似文献   

10.
Abstract

2′,3′ -Dideoxy-L-C-nucleosides, 4-amino-8-(2,3-dideoxy-L-glyceropento-furanosyl)pyrazolo[1,5-a]-1,3,5-triazines (9 and 10), 4-amino-7-(2,3-dideoxy-L-glycero-pentofuranosyl)-3H,5H-pyrrolo[3,2-d]pyrimidines (17 and 18), 7-(2,3-dideoxy-L-glyceropentofuranosyl)-4-oxo-3H,5H-pyrrolo[3,2-d]pyrimidines (23 and 24) and 2,4-diamino-5-(2,3-dideoxy-L-glyceropentofuranosyl)pyrimidines (28 and 29) have been synthesized from L-gulonic γ-lactone 1.  相似文献   

11.
Two diastereomers of 1,2,3,4,5-pentachlorocyclohexane and two diastereomers of tetrachloromonomethoxycyclohexane were synthesized stepwise from diastereomers of 3,4,5-trichlorocyclohexene, which had been derived from the dl-(36/45)-, dl-(34/56)- and (346/5)-isomers of 3,4,5,6-tetrachlorocyclohexenen (α-, β- and γ-BTC, respectively) by selective reduction with LiAlH4. The configurations of all the products and intermediary trichlorocyclohexene isomers were determined by PMR studies.  相似文献   

12.
Abstract

Abstract: 2′,3′-Dideoxy-D-C-nucleosides, 2,4-diamino-5-(2,3-dideoxy-D-glycero-pentofuranosyl)pyrimidine.s (11 and 12), 4-amino-8-(2,3-dideoxy-D-glyceropentofuranosyl)pyrazolo[1,5-a]-1,3,5-triazines (17 and 18), 4-amino-7-(2,3-dideoxy-D-glyceropentofuranosyl)-5H-pyrrolo[3,2-d]pyrimidines (2 and 25), 7-(2,3-dideoxy-D-glyceropentofuranosyl)-4-oxo-3H,5H-pyrrolo[3,2-d]pyrimidines (30 and 31) have been synthesized from γ-lactone 4. These 2′, 3′-dideoxy-nucleosides were evaluated against HBV and HIV. No significant antiviral activities were found up to 100 μM.  相似文献   

13.
1′-Epi-stegobinone [(2S,3R,1′S)-2,3-dihydro-2,3,5-trimethyl-6-(1′-methyl-2′-oxobutyl)-4H-pyran-4-one], an inhibitor of stegobinone, which is the sex pheromone of drugstore beetle (Stegobium paniceum L.), was synthesized by stereocontrol at C-2 and C-1′ starting from ethyl (R)-3-hydroxybutanoate and methyl (R)-3-hydroxypentanoate.  相似文献   

14.
为了解柯拉斯那(Aquilaria crassna)的化学成分,从其所产沉香中分离得到10个化合物,经波谱分析分别鉴定为:6,8-羟基-2-(2-苯乙基)色酮(1),6,8-二羟基-2-[2-(4-甲氧基苯)乙基]色酮(2),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f][1]benzopyran-7-one(3),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-[2-(4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(4),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(5),oxidoagarochromone B(6),oxidoagarochromone C(7),(5S,6R,7S,8R)-2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone(8),6,7-cis-dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone(9),N-trans-feruloyltyramine(10)。化合物3~5和8~10为首次从柯拉斯那沉香中分离得到。化合物1,3,6,7,9和10对乙酰胆碱酯酶具有一定的抑制活性,化合物4对人慢性髓原白血病细胞株K-562和人胃癌细胞株SGC-7901均具有较小的抑制作用,化合物1和3对人肝癌细胞株BEL-7402也有抑制活性。  相似文献   

15.
Derivatives of (S)-2-fluoro- -daunosamine and (S)-2-fluoro- -ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy- -glucose which was converted, according to the literature, into methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-α- -glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α- -altropyranoside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-α- -gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-β- -galactopyranoside. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-α- -altropyranoside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H–19F coupling constants, in comparison with the reported effects of oxyge substituents.  相似文献   

16.
Abstract

5′-Chloro-5′-deoxy-N,3′-O-dibenzoylthymidine (3a), 5′-chloro-5′-deoxy-N4, 3′-O-dibenzoyldeoxycytidine(3b), 5′-chloro-5′-deoxy-N6,3′-O-dibenzoyldeoxyadenosine(3c), N-benzoyl-1-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)thymine (5a) and N6-benzoyl-9-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)adenine (5b) have been synthesized in very high yields using a new efficient reagent, tris(2,4,6-tribrom-ophenoxy)dichlorophosphorane (BDCP). The reaction time was greatly reduced to 5–8 min. NOE data suggested an inversion of configuration at C3-position and thus an SN2 mechanism has been proposed for the chlorination reaction.

  相似文献   

17.
Each of the cell walls of four representatives of the genus Kribbella (order Actinomycetales; suborder Propionibacterineae; family Nocardioidaceae) contains a neutral polysaccharide and an acidic polysaccharide with unusual structures. Common to all four strains studied is a mannan with the following repeating unit: In the cell wall of the strain VKM Ac-2541, a teichulosonic acid was identified with a monosaccharide component that has not hitherto been found in Gram-positive bacteria, viz., pseudaminic acid, and an unusual linkage type in the polymeric chain,

where R = Н (45%), α-d-Galp3OMe (37%) or α-d-Galp2,3OMe (18%).The anionic cell wall components of three other strains are represented by teichuronic acids with a rare constituent, viz., a diaminosugar, 2,3-diacetamido-2,3-dideoxyglucopyranose. The structures of their repeating units differ in the nature of the acidic components:→4)-β-d-Manp2,3NAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2538 and VKM Ас-2540) and →4)-β-d-ManpNAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2539).The structures of all the glycopolymers were established by chemical and NMR spectroscopic methods; they are identified in Gram-positive bacteria for the first time.  相似文献   

18.
-threo-2,3-Hexodiulosono-1,4-lactone 2-(arylhydrazones) (2) were prepared by condensation of dehydro- -ascorbic acid with various arylhydrazines. Reaction of 2 with hydroxylamine gave the 2-(arylhydrazone) 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl- -threo-glycerol-l-yl)-1,2,3-triazole-5-carboxylic acid 5,41-lactones (4). On treatment of 4 with liquid ammonia, 2-aryl-4-( -threo-glycerol-l-yl)-1,2,3-triazole-5-carboxamides (5) were obtained. Acetylation of 5 with acetic anhydride-pyridine gave the triacetates, and vigorous acetylation with boiling acetic anhydride gave the tetraacetyl derivatives. Periodate oxidation of 5 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxamides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxamides, characterized as the monoacetates and diacetates. Controlled reaction of 2 with sodium hydroxide, followed by neutralization, gave 3-( -threo-glycerol-l-yl)-4,5-isoxazolinedione 4-(arylhydrazones), characterized by their triacetates. Reaction of 2 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy- -threo-2,3-hexodiulosono-1,4-lactone 2-(arylhydrazones); these were converted into 4-(2-O-acetyl-3-bromo-3-deoxy- -threo-glycerol-l-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,41-lactones on treatment with acetic anhydride-pyridine.  相似文献   

19.
Six compounds, Z- and E-fadyenolide (3, 4), 1-ally1-2,3-(methylenedioxy)-4,5-dimethoxy-benzene (5), 4-methoxy-3,5-bis (3′-methyl-2′-butenyl)-benzoic acid (6), 2,6-dihydroxy-4-methoxy-dihydrochalcone (7), and 5-hydroxy-7-methoxyflavanone (8) were isolated from three species of Jamaican Piper, Piper fadyenii, C.D.C., Piper aduncum L. and Piper hispidum Sw. Three amides (9 ~ 11) of 3,5-dimethoxy-4-oxo-5-phenylpent-2-enoic acid using piperidine, pyrrolidine and morpholine, respectively, were synthesized from compounds 3 and 4, and tested for insecticidal activity against the tick Boophilus microplus (Canestrini) and the flour feetle, Tribolium confusum Duval. In our experiment, compounds 9 ~ 11 inhibited ovogenesis of B. microplus and were toxic to T. confusum. Compounds 3 ~ 8 were found to have no activity.  相似文献   

20.
为了解薏苡(Coix lachryma-jobi)糠壳的化学成分,利用多种柱色谱技术对其乙醇提取物乙酸乙酯萃取部位进行分离,经波谱数据分析鉴定了15个化合物,分别为香豆酸(1)、香豆酸甲酯(2)、2-羟乙基-香豆酸酯(3)、咖啡酸甲酯(4)、阿魏酸甲酯(5)、(E)-3-(4-甲氧基苯基)丙烯酸(6)、2,3-二羟基-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号