首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two species of chrysomelid leaf beetles found in Brazil, Diabrotica speciosa and Cerotoma arcuata, are strongly attracted to the root of Ceratosanthes hilariana (Cucurbitaceae). Root extracts stimulate a compulsive feeding response. The major feeding stimulants isolated from these extracts were cucurbitacin B and its 23,24-dihydro derivative.  相似文献   

2.
Quantitative relationships were investigated between α-tocopherol and either polyunsaturated fatty acids (PUFA) or PUFA > 18:2 (PUFA with three or more double bonds) in chicken dark meat (thigh muscle) and light meat (M. pectoralis profundus). Their effects on the development of oxidative rancidity in precooked meats held at 5°C for 3 days were also investigated. Chicken dark meat had higher concentrations of α-tocopherol (μmol) per gram of PUFA or PUFA > 18 :2 than did chicken light meat. 2-Thiobarbituric acid (TBA) values for the cooked ground meats held at 5°C for 3 days tended to increase at both higher and lower concentrations of α-tocopherol than the concentration of about 1.5 μmol of α-tocopherol per gram of PUFA regardless of the type of chicken skeletal muscle.  相似文献   

3.
Summary After testing a population sample of 185 hospitalized Italian children for the plasma -L-fucosidase deficiency and establishing an approximate threshold value between heterozygotes and wild-type homozygotes, we analyzed by two statistical methods the distribution of the two genotypes. The results obtained by probit analysis agree with threshold and average values expected on the basis of the Hardy-Weinberg equilibrium.In addition, the level of -fucosidase in leukocytes of 12 individuals with deficiency of -fucosidase in plasma was found to be significantly lower than that of 61 controls (P<0.005). These results indicate that the mutation(s) causing a deficiency of -fucosidase in plasma is (are) also expressed in leukocytes.  相似文献   

4.
α-Dystrobrevin is both a dystrophin homologue and a component of the dystrophin protein complex. Alternative splicing yields five forms, of which two predominate in skeletal muscle: full-length α-dystrobrevin-1 (84 kD), and COOH-terminal truncated α-dystrobrevin-2 (65 kD). Using isoform-specific antibodies, we find that α-dystrobrevin-2 is localized on the sarcolemma and at the neuromuscular synapse, where, like dystrophin, it is most concentrated in the depths of the postjunctional folds. α-Dystrobrevin-2 preferentially copurifies with dystrophin from muscle extracts. In contrast, α-dystrobrevin-1 is more highly restricted to the synapse, like the dystrophin homologue utrophin, and preferentially copurifies with utrophin. In yeast two-hybrid experiments and coimmunoprecipitation of in vitro–translated proteins, α-dystrobrevin-2 binds dystrophin, whereas α-dystrobrevin-1 binds both dystrophin and utrophin. α-Dystrobrevin-2 was lost from the nonsynaptic sarcolemma of dystrophin-deficient mdx mice, but was retained on the perisynaptic sarcolemma even in mice lacking both utrophin and dystrophin. In contrast, α-dystrobrevin-1 remained synaptically localized in mdx and utrophin-negative muscle, but was absent in double mutants. Thus, the distinct distributions of α-dystrobrevin-1 and -2 can be partly explained by specific associations with utrophin and dystrophin, but other factors are also involved. These results show that alternative splicing confers distinct properties of association on the α-dystrobrevins.  相似文献   

5.
The effects of ω3 polyunsaturated fatty acids [PUFA; mainly eicosapentaenoic acid (20: 5, ω3) and docosahexaenoic acid (22:6, ω3)] on the growth, tissue weights and fatty acid compositions of tissue total lipids in female rats and their progeny were investigated. Female rats of the Wistar strain, weighing 77~94g, were fed a 25% casein diet containing 5% of either corn oil (control), sardine oil or PUFA ethyl ester for 8 ~ 9 weeks prior to mating, and during gestation and lactation, and then for a further 2 weeks. The progeny were weaned to the maternal diet and then the latter was administered for a further 2 weeks. Dietary changes in the body weights of the dams were not generally seen, but the body weights at birth and growth of the offspring from the females supplied with the PUFA diet were inferior compared to those of the other groups. The fertility did not differ among the dietary groups. The weights of several tissues in the dams and the progeny increased in proportion to their body weights but not that of the progeny brain, which remained ' almost unchanged by the dietary fats. As to the fatty acid compositions of total lipids in the tissues, on the whole, decreased levels of ωβ fatty acids and increased percentages of ω3 fatty acids were found in the sardine and PUFA groups, the changes being greater in the PUFA group than in the sardine one. Such findings due to the feeding of PUFA were more remarkable in the progeny compared with in the dams. Eicosatrienoic acid (20: 3, ω9) was almost completely undetectable in the tissue total lipids of all the dietary groups.  相似文献   

6.
A computer model of oxidative phosphorylation (OXPHOS) in skeletal muscle is used to compare state 3, intermediate state and state 4 in mitochondria with rest and work in skeletal muscle. ‘Idealized’ state 4 and 3 in relation to various ‘experimental’ states 4 and 3 are defined. Theoretical simulations show, in accordance with experimental data, that oxygen consumption (V’O2), ADP and Pi are higher, while ATP/ADP and Δp are lower in rest than in state 4, because of the presence of basal ATP consuming reactions in the former. It is postulated that moderate and intensive work in skeletal muscle is very different from state 3 in isolated mitochondria. V’O2, ATP/ADP, Δp and the control of ATP usage over V’O2 are much higher, while ADP and Pi are much lower in the former. The slope of the phenomenological V’O2-ADP relationship is much steeper during the rest-work transition than during the state 4-state 3 transition. The work state in intact muscle is much more similar to intermediate state than to state 3 in isolated mitochondria in terms of ADP, ATP/ADP, Δp and metabolic control pattern, but not in terms of V’O2. The huge differences between intact muscle and isolated mitochondria are proposed to be caused by the presence of the each-step activation (ESA) mechanism of the regulation of OXPHOS in intact skeletal muscle. Generally, the present study suggests that isolated mitochondria (at least in the absence of Ca2+) cannot serve as a good model of OXPHOS regulation in intact skeletal muscle.  相似文献   

7.
Effects of high dietary cholesterol on erythrocyte membrane lipids were studied. Feeding rats with a diet containing 0.5% cholesterol and 0.15% sodium cholate for two weeks induced changes in erythrocyte membrane lipids including a decrease in cholesterol, an increase in α-tocopherol (α-Toc) and changes in the fatty acid composition of phospholipids. Oleic acid and linoleic acid increased, while arachidonic acid decreased in phosphatidylcholine. Saturated fatty acids decreased and unsaturated fatty acids increased in phosphatidylethanolamine. Almost the same changes in membrane lipids were also noted after six weeks of feeding rats with the diet. A diet containing 0.5% cholesterol but without sodium cholate caused a decrease in erythrocyte cholesterol and an increase in erythrocyte α-Toc after two weeks of feeding, as compared to the basal diet, indicating that high dietary cholesterol, but not sodium cholate, was responsible for these changes in the erythrocyte membrane.  相似文献   

8.
We previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation. PAL treatment induced the proinflammatory cytokine interleukin (IL)-6 in a manner dependent on SphK1, and this was attenuated by inhibition of the sphingosine-1-phosphate receptor 3 (S1PR3). Diet-induced obesity in mice demonstrated that IL-6 expression in muscle, but not adipose tissue, increased in obesity, but this was attenuated in Sphk1−/− mice. Moreover, plasma IL-6 levels were significantly decreased in obese Sphk1−/− mice relative to obese wild type mice, and muscle, but not adipose tissue IL-6 signaling was activated. These data indicate that PPARα regulates Sphk1 expression in the context of fatty acid oversupply and links PAL to muscle IL-6 production. Moreover, this function of SphK1 in diet-induced obesity suggests a potential role for SphK1 in obesity-associated pathological outcomes.  相似文献   

9.
10.
《Molecular membrane biology》2013,30(1-2):131-157
α-Bungarotoxin (BuTX; 5 μg/ml) completely blocked the endplate potential and extrajunctional acetylcholine (ACh) sensitivity of surface fibers in normal and chronically denervated mammalian muscles, respectively, in about 35 min. A 0.72 ± 0.033 mV amplitude endplate potential returned in normal muscle fibers after 6.5 hr. of washout of α-BuTX, and an ACh sensitivity of 41.02 ± 3.95 mV/nC was recorded in denervated muscle after 6.5 hr of wash (control being 1215 ± 197 mV/nC). A two-step reaction of BuTX with binding sites which may allosterically interact is postulated.

Several pharmacologic differences were noted between the ACh receptors at the normal endplate and those appearing extrajunctionally following denervation. In normal innervated muscles exposed to BuTX in the presence of 20 μM carbamylcholine or decamethonium, washout of both drugs restored twitch to control levels within 2 hr. Endplate potentials large enough to initiate action potentials were also recorded in most surface fibers. In contrast, these agents, in much higher concentrations (50 μM), were almost ineffective in preventing BuTX blockade of ACh sensitivity in denervated muscle. Hexamethonium (10 and 50 mM) depressed neuromuscular transmission and blocked the action of BuTX in normal muscle in a dose-dependent fashion. On the extrajunctional receptors, hexamethonium (50 mM) was ineffective in protecting against BuTX. We may conclude that at the normal endplate region there are two distinct populations of ACh receptors, both of which react with cholinergic ligands and BuTX, but that a small population (representing ± 1% of the total) reacts with BuTX reversibly. Our findings further suggest a clear distinction between ACh receptors located at the normal endplate region and those of the extrajunctional region of the chronically denervated mammalian muscle.  相似文献   

11.
A Kalyva  A Schmidtmann  MA Geeves 《Biochemistry》2012,51(32):6388-6399
Tropomyosin (Tm) is a dimer made of two alpha helical chains associated into a parallel coiled-coil. In mammalian skeletal and cardiac muscle, the Tm is expressed from two separate genes to give the α- and β-Tm isoforms. These associate in vivo to form homo- (α(2)) and heterodimers (α·β) with little β(2) normally observed. The proportion of α(2) vs α·β varies across species and across muscle types from almost 100% α(2)- to 50% α·β-Tm. The ratio can also vary during development and in disease. The functional significance of the presence of these two isoforms has not been defined because it is difficult to isolate or purify the α·β dimer for functional studies. Here we report an effective method for purifying bacterially expressed Tm as α·β dimers using a cleavable N-terminal tag on one of the two chains. The same method can be used to isolate Tm dimers in which one chain carries a mutation. We go on to show that the α·β dimers differ in key properties (actin affinity, thermal stability) from either the α(2)- or β(2)-Tm. However, the ability to regulate myosin binding when combined with cardiac troponin appears unaffected.  相似文献   

12.
Measurements of wing-beat frequency (WBF) have been used to characterize flight muscle metabolic rate in Drosophila melanogaster during tethered flight. Progeny of crosses between 17 X-chromosome substitution lines and three null-activity stocks have been studied in order to determine the effect on flight metabolism of sharply reduced activity of -glycerophosphate dehydrogenase (GPDH). It was found that flies with an approximate 50% reduction in GPDH activity have a metabolic rate that is, in most cases, indistinguishable from that of wild-type flies and, in the most extreme cases, reduced by only 4%. These results demonstrate that Gpdh is not a major gene for flight metabolism, in the quantitative genetic sense of the term. These results are in agreement with the Kacser and Burns (1973, 1979, 1981) theory of flux, which postulates that the activity of an enzyme embedded in a multienzyme pathway can sometimes vary from wild-type to very low levels (perhaps 5–10% wild type) with no significant effect on flux through the total pathway.This research was supported by several grants to JWC: NSF Grant 8211667, a grant from the Graduate School, University of Minnesota, and a Research Career Development Award from the NIH.  相似文献   

13.
The main extracellular matrix binding component of the dystrophin-glycoprotein complex, α-dystroglycan (α-DG), which was originally isolated from rabbit skeletal muscle, is an extensively O-glycosylated protein. Previous studies have shown α-DG to be modified by both O-GalNAc- and O-mannose-initiated glycan structures. O-Mannosylation, which accounts for up to 30% of the reported O-linked structures in certain tissues, has been rarely observed on mammalian proteins. Mutations in multiple genes encoding defined or putative glycosyltransferases involved in O-mannosylation are causal for various forms of congenital muscular dystrophy. Here, we explore the glycosylation of purified rabbit skeletal muscle α-DG in detail. Using tandem mass spectrometry approaches, we identify 4 O-mannose-initiated and 17 O-GalNAc-initiated structures on α-DG isolated from rabbit skeletal muscle. Additionally, we demonstrate the use of tandem mass spectrometry-based workflows to directly analyze glycopeptides generated from the purified protein. By combining glycomics and tandem mass spectrometry analysis of 91 glycopeptides from α-DG, we were able to assign 21 different residues as being modified by O-glycosylation with differing degrees of microheterogeneity; 9 sites of O-mannosylation and 14 sites of O-GalNAcylation were observed with only two sites definitively exhibiting occupancy by either type of glycan. The distribution of identified sites of O-mannosylation suggests a limited role for local primary sequence in dictating sites of attachment.  相似文献   

14.
Pinguisone accumulated in cultured gametophytes of Aneurapinguis to a significantly high level. A biosynthetic study on the formation of pinguisone was carried out by feeding [2-13C]-acetate to the cultured gametophytes. Pinguisone was labeled at an adequate level to determine the labeling positions by a 13C-NMR analysis. The labeling pattern indicated two-methyl migration and C-C bond cleavage of the main chain in farnesyl diphosphate in the formation of pinguisone.  相似文献   

15.
We examined the effects of n-3 polyunsaturated fatty acid (PUFA), such as α-linolenic (α -LA), eicosapentaenoic (EPA), and docosahexaenoic acid (DHA) on immunoglobulin (Ig) production by spleen lymphocytes of Sprague-Dawley rats, n-3 polyunsaturated fatty acid (PUFA) strongly inhibited the production of IgA and IgM and that of IgG weakly at 100 μΜ. When the lymphocytes were treated with n-3 PUFA in the presence of other inhibitory biomaterials such as lectins, some PUFA attenuated their inhibitory effect on Ig production. In the presence of concanavalin A (ConA), all n-3 PUFA attenuated the inhibitory effect of ConA on the production of IgM or IgG but increased its inhibition of IgA synthesis. Thus, the interaction of n-3 polyunsaturated fatty acid and lectins in spleen interfere with each other or the expression of Ig production regulating activity.  相似文献   

16.
17.
PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles.  相似文献   

18.
Lipid peroxidation in isolated chloroplasts illuminated by visible light and the role of α-tocopherol in chloroplasts were studied. The TBA reactants and fluorescent products derived from lipid peroxidation were formed by illumination. Peroxidation was inhibited by free radical scavengers and 1O2 quenchers. Hydroxy methyl octadecanoates, which were the reduced and hydrogenated products of lipid hydroperoxides, were detected. Among them, 10-and 15-hydroxy methyl octadecanoates were generated from 1O2 oxidation. On the other hand, lipid hydroperoxides did not accumulate in this peroxidation process. The amount of α-tocopherol in the chloroplasts decreased with lipid peroxidation, and α-tocopheryl quinone was produced. The results indicate that α-tocopherol acts as a free radical scavenger for photo-oxidation of chloroplasts.  相似文献   

19.
H. Veen 《Planta》1972,103(1):35-44
Summary Transportand metabolism of -naphthaleneacetic acid -naphthaleneacetic acid, and -decalylacetic acid, all labelled with 14C in the carboxyl, group, were studied. Only -naphthaleneacetic acid is transported in a polar way. Most of the radioactivity in the tissue is in a low molecular form, either free or as immobilization products. The immobilization of -naphthaleneacetic acid is similar to that of -naphthaleneacetic acid. Immobilization of -decalylacetic acid is typically different. Bioassays showed -naphthaleneacetic acid as the sole biologically active component. It is concluded that stereo requirements necessary for biological activity are also required for polar auxin transport. It is further concluded that the observed specificity of the transport system is not related to the formation of immobilization products.  相似文献   

20.
The nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase functionally interact in skeletal muscle (Krivoi, I. I., Drabkina, T. M., Kravtsova, V. V., Vasiliev, A. N., Eaton, M. J., Skatchkov, S. N., and Mandel, F. (2006) Pflugers Arch. 452, 756–765; Krivoi, I., Vasiliev, A., Kravtsova, V., Dobretsov, M., and Mandel, F. (2003) Ann. N.Y. Acad. Sci. 986, 639–641). In this interaction, the specific binding of nanomolar concentrations of nicotinic agonists to the nAChR stimulates electrogenic transport by the Na,K-ATPase α2 isozyme, causing membrane hyperpolarization. This study examines the molecular nature and membrane localization of this interaction. Stimulation of Na,K-ATPase activity by the nAChR does not require ion flow through open nAChRs. It can be induced by nAChR desensitization alone, in the absence of nicotinic agonist, and saturates when the nAChR is fully desensitized. It is enhanced by noncompetitive blockers of the nAChR (proadifen, QX-222), which promote non-conducting or desensitized states; and retarded by tetracaine, which stabilizes the resting nAChR conformation. The interaction operates at the neuromuscular junction as well as on extrajunctional sarcolemma. The Na,K-ATPase α2 isozyme is enriched at the postsynaptic neuromuscular junction and co-localizes with nAChRs. The nAChR and Na,K-ATPase α subunits specifically coimmunoprecipitate with each other, phospholemman, and caveolin-3. In a purified membrane preparation from Torpedo californica enriched in nAChRs and the Na,K-ATPase, a ouabain-induced conformational change of the Na,K-ATPase enhances a conformational transition of the nAChR to a desensitized state. These results suggest a mechanism by which the nAChR in a desensitized state with high apparent affinity for agonist interacts with the Na,K-ATPase to stimulate active transport. The interaction utilizes a membrane-delimited complex involving protein-protein interactions, either directly or through additional protein partners. This interaction is expected to enhance neuromuscular transmission and muscle excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号