首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We induced calluses from two Euphorbia species and analyzed the lipids and pigments of their cells. Growth was promoted when malt extract was added to the medium for callus induction. The lipid constituents of both E. tirucalli and E. millii calluses were the same; sitosterol, stigmasterol, campesterol, palmitic acid and linoleic acid. In addition, an anthocyanin, cyanidin glycoside, was isolated from callus that had been induced from E. millii leaves cultured on medium containing 0.1 ppm 2,4-d.  相似文献   

2.
Direct exposure of calluses of Lycium barbarum L. to an auxin-free medium can induce somatic embryogenesis. Somatic embryogenesis of Lycium barbarum L. is controlled artificially by regulating 2,4-D concentration. The total RNA that was isolated from calluses, embryonic calluses and early somatic embryos was used for analyzing differential genes expression. We obtained three cDNAs from early somatic embryogenesis which were not found in calluses. The results indicate that these cDNAs were early embryogenesis-specific cDNAs and this gene expression was induced in cultured calluses after a transfer to an auxin- free medium. A cDNA library was constructed using poly(A)+-RNA derived from early somatic embryos of Lycium barbarism L. Two full-length cDNAs were isolated from the library by differential screening. Northern blot hybridization analysis indicated that the expression of the full-length cDNA only existed in embryogenic calluses and early somatic embryos of Lycium barbarum L. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of auxins and cytokinin on callus formation, growth and regeneration of Gracilaria tenuistipitata Chang et Xia and G. perplexa Byrne et Zuccarello (Gracilariales, Rhodophyta) are reported. Plant growth regulators (PGR) in concentrations ranging from 0.1 to 100.0 μmol of indole‐3‐acetic acid, 2,4‐dichlorophenoxyacetic acid (2,4‐D), and kinetin (K) were added to the ASP 12‐NTA solid medium (0.7% agar), and apical and intercalary segments (5 mm long) were inoculated as initial explants. K stimulated growth rates of intercalary segments of G. tenuistipitata in a linear relation, and 2,4‐D (1.0 μmol) and K (10.0 μmol) stimulated growth rates of apical and intercalary segments of G. perplexa, respectively. The simultaneous formation of apical, basal, and intermediate calluses is reported for the first time in axenic tissue cultures of red algae. With intercalary segments of G. tenuistipitata, basal callus induction rates were higher than those of apical and intermediate calluses in the majority of treatments, and auxins had stimulatory effects on the formation of all callus types. In apical segments of G. perplexa, intermediate callus formation was stimulated only by treatment with 1.0 μmol of K, while apical callus formation was stimulated by indole‐3‐acetic acid (1.0–10.0 μmol), 2,4‐D (10.0–100.0 μmol), or K (0.1 μmol). Intercalary segments of G. perplexa developed only intermediate calluses, and the majority of treatments with PGR stimulated higher rates than those presented by apical segments. Potential for regeneration (development of adventitious plantlets originated from callus cells) was higher in apical calluses than in basal and intermediate calluses developed in intercalary segments of G. tenuistipitata. Moreover, auxins and cytokinin were essential to the induction of regeneration in intermediate calluses, while specific concentrations stimulated regeneration from basal and apical calluses. Plant regeneration in G. perplexa was observed only after transferring calluses from solid to liquid medium, and the majority of treatments with PGR had stimulatory effects. Regenerating plants of G. perplexa developed tetrasporangia, and released tetraspores giving rise to adult gametophytes. Our results indicate that auxins and cytokinin have a regulatory role in the growth and morphogenesis in G. tenuistipitata and G. perplexa, and diversity of responses presented by both species is related to specific developmental systems.  相似文献   

4.
小叶石楠果实中低极性化学成分GC-MS分析   总被引:1,自引:0,他引:1  
采用溶剂提取法从小叶石楠果实中提取低极性化学成分,并利用气相色谱—质谱仪对果实中的低极性化学成分进行分离和鉴定,同时用面积归一法测定各成分的相对百分含量。结果表明:已确认了25种成分,占果实中低极性化学成分的96.04%,其主要成分为亚麻酸甲酯(13.11%)、邻苯二甲酸二辛醇酯(10.13%)、角鲨烯(9.19%)、维生素E(8.67%)、十九烷(8.03%)。所鉴定的化合物多为该种植物中首次发现,为小叶石楠的进一步开发利用提供了科学依据。  相似文献   

5.
To study the influence of cultural conditions on higher plant cells in suspension culture, the effects of nutritional conditions on the growth of suspended cells were investigated. Calluses were induced from 39 species of Nicotiana plants and 6 species of Populus plants on agar slant media, then these were transferred to suspension cultures. Concentrations of 2,4-D and kinetin suitable for incubation of callus from each plant were investigated and species having high growth rates in the appropriate medium were selected.

The effects of concentrations of auxins and kinetin, a variety of carbon and nitrogen sources, thiamin and myo-inositol on growth of the selected calluses were also studied. Of these calluses studied, N. glutinosa, N. tabacum var. Xanthi ova and P. hybrids were selected as calluses having high growth rates. Myo-inositol had no effect on any callus growth, and thiamin gave a distinct effect on Populus callus only. Nitrate as a nitrogen and sucrose as a carbon sources, and 2,4-D as an auxin were most effective in all calluses studied. Kinetin was essential for N. glutinosa among the calluses studied. Although high sugar concentrations tended to lengthen the lag period in the growth curve, there was no difference in the growth rates of the logarithmic phase among the concentrations.  相似文献   

6.
This experiment assessed the effect of partial physical desiccation on plant regeneration efficiency in scutellum-derived embryogenic calluses of rice (Oryza sativa L.) variety Super basmati. A number of callusing cultures were developed, and efficient callus induction was observed on MS (Murashige and Skoog) basal medium supplemented with 2.0 mg/L 2,4-dichlorophenoxy acetic acid. The calluses were proliferated on the same medium for 3 weeks and then shifted to dehydration desiccation treatment for 72 h. The desiccated calluses were cultured on different media for somatic embryogenesis and plant regeneration. A medium with 2.0 mg/L α-napthaleneacetic acid, 10.0 mg/L abscisic acid , 2.0 mg/L kinetin was best for somatic embryogenesis only, but not for further plant development. After 10 d, differentiated calluses were sub-cultured on medium with various concentrations and types of carbohydrates (carbon source) in 1MS2j medium. A large number of plantlets (14.51±2.81 and 8.56±2.90 plants/callus) were regenerated via chemical desiccation, on MS with 3% maltose+3% sorbitol and 6% sucrose, respectively. Under dehydration on only simple MS (3% sucrose), 11.23±3.22 plants/callus were developed. Under conditions of dehydration and chemical desiccation, plant regeneration rates were higher than the calluses cultured on simple MS medium in the presence of plant growth regulator. After somatic embryogenesis, >25% plants were sterile. The protocol used here may allow maximum regeneration of normal and fertile plantlets of super basmati rice within 3 months.  相似文献   

7.
The effects of plant growth regulators on callus induction rate and regeneration of K. alvarezii explants was evaluated. K. alvarezii calluses were induced in vitro with kinetin (K), 6-benzylaminopurine (B), 1-naphtalene acetic acid (N) and spermine (S). After 30 days, K. alvarezii explants produced filamentous calluses and isolated crystalline filaments growing from the medullar region and from cortical cells at the cut edge. The plant growth regulators 1-naphtalene acetic acid (1 mg L−1) and 6-benzylaminopurine (1 mg L−1) and the 1-naphtalene acetic acid + kinetin + spermine (1, 1, 0.018 mg L−1 respectively) combination produced 85 to 129% more calluses, with significant differences versus the control (p<0.05). Spermine at 0.018 mg L−1 produced calluses in the apical, intercalary and basal regions of explants. Spermine also reduced callus induction time to 7 days, which is faster than previously reported induction times with other plant growth regulators. An airlift bioreactor was designed and characterized to micropropagate K. alvarezii calluses. The bioreactor had mixing times ranging from 4.6–10.3 s at T 90 and T 95, which is shorter than those for the Fernbach (5.2–13.4 s) and balloon flasks (6.3–17.3 s). Mixing time standard deviations were smaller for the bioreactor (1.1–4.6) than for the Fernbach (9.3–13.6) and balloon flasks (5.5–15.8), suggesting an adequate flow regime within the bioreactor. The results are useful for improving callus induction in K. alvarezii and propagating microplantlets in an airlift bioreactor, and provide baseline data for macroalgal bioreactor culture.  相似文献   

8.
Paul E. Hatcher 《Oecologia》1990,85(2):200-212
Summary Age changes of foliage resource quality (water, nitrogen, fibre, phenolics and toughness) were studied in five species of conifer (Pinus sylvestris L.), Picea abies (L.) Karsten, Tsuga heterophylla (Rafinesque) Sargent (all Pinaceae), Chamaecyparis lawsonian (Murray) Parlatore and Thuja plicata D. Don (both Cupressaceae) over a 2-year period in an English forest.Mature foliage of Pinus sylvestris was characterized by higher levels of nitrogen, fibre and toughness, and lower phenolics, and that of Tsuga heterophylla by higher levels of phenolics, and lower fibre and toughness levels, than the mature needles of the other species studied. Immature needles had higher levels of water and nitrogen, and lower levels of fibre and toughness, than older needles. Immature needles of Picea abies and Tsuga heterophylla had a high concentration of phenolics, which decreased with needle maturity. By mid-August, the levels of most of the foliar constituents in current-year needles had stabilized at levels maintained for the next year. Sampling revealed a fall in the concentration of phenolics, fibre and water in mature needles between March and June. Possible reasons for this seasonal trend are discussed. The levels of conifer foliar constituents were compared with levels recorded in broadleaf trees. Conifers had greater concentrations of all measured foliar constituents, but, with the exception of the six fold greater toughness of conifer needles, the differences between broadleaves and conifers were less than those between the immature and mature conifer needles. Previous studies have related the abundance of Lepidoptera on conifers to hostplant taxonomic relationships. However, the foliar constituents measured in this study were poor predictors of taxonomic relationships between the conifers. It is suggested that the abundance of Lepidoptera on conifers is not determined by levels of general foliar constituents and the role of other hostplant factors in shaping lepidopteran utilization of conifers is discussed.  相似文献   

9.
The roots of Scutellaria baicalensis are a major traditional Chinese medicine. We report research on induction, characteristics and chemical analysis of polyploid plants of S. baicalensis. Immersing calluses in 0.2% colchicine solution for 12 h prior to culture induced a high number of tetraploid plants. The induction rate reached as high as 40% of treated calluses. More than 50 lines of tetraploid plants were obtained. All tetraploid plants showed typical polyploidy characteristics. Twenty selected tetraploid lines were transferred to the field for determination of morphological characteristics and for chemical assays. Seven elite lines have been selected for further selection and breeding into new varieties for commercial production.  相似文献   

10.
Summary Jaborandi (Pilocarpus microphyllus) is the only known source of pilocarpine, and although this alkaloid is the only natural compoud used to treat glaucoma, very little is known about its metabolism. Calluses obtained from petioles of P. microphyllus leaves were partially immersed in MS (Murashige and Skoog) liquid medium containing different pH levels (4.8, 5.8, and 6.8), nutrient concentration (MS normal basal medium concentration, absence of N, P, and K and three times normal concentrations), histidine and threonine (0.05, 0.15 and 0.75 mM) NaCl (25 and 75 mM) and polyethylene glycol (5 and 15%). Exposure to methyljasmonic acid (MJ) vapor was also investigated. The calluses were subjected to these conditions for 4 and 8d under gentle agitation in the dark. Some calluses were also kept under continuous light. Pilocarpine was identified in the liquid medium by liquid chromatography-mass spectrometry/mass spectrometry. The alkaloid quantifications in the media and cells were carried out by high performance liquid chromatography (HPLC). The calluses maintained in the dark released the greatest quantities of pilocarpine into the medium. Methyljasmonate inhibited the release of pilocarpine in the medium. High pH (6.8), absence and excess of N, excess of P, and 0.75 mM of histidine and threonine induced the highest production of the alkaloid.  相似文献   

11.
Summary This study was carried out to evaluate the effects of purine synthesis inhibitor mizoribine, purine and pyrimidine synthesis inhibitors azaserine and acivicin, and surfactant Silwet L-77 on Agrobacterium-mediated transformation efficiency of embryogenic calluses from maize elite inbred lines Qi 319 and Ye 515. After transformation and three rounds of selection on 2.8 μM chlorsulfuron, resistant calluses were obtained subsequently, and morphologically normal plantlets were regenerated from 80 to 90% of the resistant calluses treated with the compounds. There were no obvious discrepancies between the frequencies of plantlet regeneration and the ratio of PCR positive plantlets of calluses treated with different compounds. Results of PCR assay with primers for betA showed that 40.2% (103/256) of the regenerated plantlets were positive. The percentage of resistant calluses was 2–3-fold higher than the control after being treated with 0.19–0.27 mM mizoribine. The most suitable concentration of azaserin was 0.36 mM, which gave a 4-fold increase in the percentage of resistant calluses. Acivicin at 0.28–0.84 mM yielded a 3–5-fold increase in the percentage of resistant calluses, which is significantly better than the control. When the calluses were treated with 0.01 or 0.02% Silwet L-77, the percentages of resistant calluses were 34.89 and 25.60%, respectively. We concluded that purine synthesis inhibitors, purine and pyrimidine synthesis inhibitor and the surfactant Silwet L-77 at optimal concentrations significantly improved the Agrobacterium-mediated transformation of maize calluses.  相似文献   

12.
Among photomixotrophic green calluses tested (N. rustica. N. tobacum L. cv. BY-4 and Samsun), the callus of Samsun had the highest contents of chlorophyll and chloroplast lipids, such as monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), sulfoquinovosyldigly-ceride (SQDG) and phosphatidylglycerol (PG). However, the chlorophyll and chloroplast lipids in the green callus of Samsun were still 1/6 and 1/3 of that in the parent leaves, respectively. The relative content of a-linolenate in MGDG, DGDG and SQDG of the green calluses were higher than that of the white calluses. The ratios of hexadecatrienoate in MGDG and hexadeceno-ate 3-trans) in PG in the green calluses were trace or less compared with that of the parent leaves. The crude lipids and total fatty acid contents of the chlorophyll deficient leaves (N. taba-cum L. cv. Consolation 402 and Dominant Aurea Su/su) were almost the same as those of the normal leaves (cv. BY-4 and Samsun), although the chlorophyll contents of the chlorophyll deficient leaves were 1/3 ~ 1/4 of that of the normal leaves. The ratios of chloroplast lipids in the total polar lipids in the chlorophyll deficient leaves were a little lower than that in the normal green leaves, but the former had a slightly higher ratio of phospholipids such as phosphatidylcholine and phosphatidylethanolamine than the latter. There were few differences in the fatty acid compositions of each individual lipid betweeen both types of leaves.  相似文献   

13.
Evaluation of phytochemical constituents and antioxidant and antimicrobial activities of hexane (PELH), dichloromethane (PELDCM), ethyl acetate (PELEA), and MeOH (PELM) extracts of young leaves of Pseudocalymma elegans have been carried out. Moreover, extracts have also been explored for the presence of sulphur containing compounds, 1,2‐dithiolane ( 33 ), diallyl disulfide ( 35 ), 3‐vinyl‐1,2‐dithiacyclohex‐5‐ene ( 37 ), and diallyl trisulfide ( 38 ) responsible for the garlic like smell of P. elegans. All the extracts were found to be antioxidant and showed potent inhibition with IC50 values of 0.168 ± 0.001, 0.128 ± 0.002, 0.221 ± 0.011, and 0.054 ± 0.001, respectively, as compared to standard drugs ascorbic acid (AA) and butylated hydroxytoluene (BHT). The ethyl acetate extract (PELE) showed excellent activities against few Gram‐positive and Gram‐negative bacteria and some fungi as compared with standard drug ceftriaxone (3rd generation cephalosporin) and nystatin, respectively. Chemical constituents of hexane, dichloromethane, and ethyl acetate extracts were identified by gas chromatography‐mass spectrometry and mass spectral library search. Over all 55 chemical constituents were first time identified from the leaves which included branched and n‐hydrocarbons, fatty acids, fatty acid methyl esters, fatty alcohols, terpenes, alkaloid, vitamins, glycosides, aromatic compounds, and sulfur containing compounds. Two known chemical constituents, ursolic acid ( 1 ) and β‐amyrin ( 2 ), were also purified for the first time from the MeOH extract. To elucidate the structures of these compounds, UV, IR, EI‐MS, 1H‐ and 13C‐NMR spectroscopy were used.  相似文献   

14.
Helminthosporium oryzae toxin induced electrolyte leakage from rice callus tissues and caused their browning and death. A virulent isolate of the pathogen invaded and colonised callus tissues rapidly, while a less virulent and a nonpathogenic isolate colonised calluses only weakly if at all. Addition of the toxin to calluses permitted colonisation of calluses by the nonpathogenic isolate. Four toxin-resistant calluses were selected and plants regenerated from two of these resistant calluses showed resistance to the pathogen. This resistance was heritable and stability of resistance was observed in the R1, R2 and R3 generations.  相似文献   

15.
Panax ginseng calluses were cultured for 5 weeks on solid MS medium supplemented with kinetin 0.46 mM (0.1 mg l–1) and 2 mg l–1 of 2,4-D (9.05 mM), IBA (9.98 mM) or NAA (10.74 mM). In the conditions studied, 2,4-D inhibited the organogenic capacity of the calluses, whereas IBA or NAA increased this capacity. IBA induced the formation of a high number of buds and roots, but the roots were thin and necrotized. Calluses grown with NAA produced fewer buds and roots than those grown in IBA medium, but the roots were thick and showed good growth. The highest ginsenoside content was found in root forming calluses grown in the presence of NAA.In calluses forming roots or buds, 2,4-D, NAA and especially IBA increased the Rb group of ginsenosides rather than that of the Rg group.  相似文献   

16.
Eight carotenoids, such as phytoene, α-carotene, violaxanthin, etc., synthesized in citrus callus of 31 genotypes were identified and determined. Though varied with genotypes, the carotenoids composition of callus derived from a certain genotype was stable, while carotenoids contents altered between sub-cultures. Some specific carotenoids were produced in calluses of limited genotypes: β-citraurin was only synthesized in calluses of Nianju tangerine (Citrus reticulata Blanco) and Page tangelo (C. reticulata × C. paradisi); while 9-Z-violaxanthin was only detected in Nianju tangerine and Skaggs Bonanza navel orange (C. sinensis L. Osbeck). Notably, the only carotenoid detected in calluses of Natsudaidai (C. aurantium L.) and other two sweet oranges (C. sinensis L. Osbeck) was phytoene. It implied that citrus calluses could be employed to produce specific carotenoids in the future. To further elucidate the characters of callus carotenoids profile, comparisons of carotenoids profiles was made among calluses, fruit tissues and leaves of four selected citrus genotypes. Results showed that lycopene was not detected in leaves and calluses; nevertheless, both citrus fruits and calluses accumulated phytoene, whereas leaves did not except those of Cara Cara navel orange. It is postulated that citrus callus featured its carotenoids profile different from fruit tissues and leaves. In conclusion, the advantages of using citrus callus as an alternative model research system in understanding the regulation of carotenogenesis have been discussed.  相似文献   

17.
Summary Establishment of fast-growing, highly regenerable callus cultures was examined in Muscari armeniacum Leichtl. ex Bak. in order to develop an efficient genetic transformation system. High-frequency callus formation was obtained from leaf explants of cv. Blue Pearl on media containing 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC). Fast-growing, yellowish nodular callus lines and white friable callus lines containing a few somatic embryos were established on initiation medium supplemented with 4.5 μM 2,4-D and with 54 μM NAA, respectively. The yellowish nodular calluses vigorously produced shoot buds after transfer to media containing 0.44–44 μM 6-benzyladenine (BA), whereas the white friable calluses produced numerous somatic embryos upon transfer to plant growth regulator-free (PGR-F) medium. Histological observation of shoot buds and somatic embryos indicated that the former consisted of an apparent shoot meristem and several leaf primordia, and the latter had two distinct meristematic regions, corresponding to shoot and root meristems. Both shoot buds and somatic embryos developed into complete plantlets on PGR-F medium. Regenerated plants showed no observable morphological alterations. High proliferation and regeneration ability of these calluses, were maintained for over 2 yr.  相似文献   

18.

The aim of the present study was to evaluate melatonin effects on the callus induction and phenolic compound production of Ocimum basilicum L. (sweet basil). Calluses, derived from leaf explants, were grown on Murashige and Skoog (MS) medium supplemented with 0, 100, or 200 μM melatonin, and subsequently extracted for determination of their phenolic contents. Melatonin decreased the callus induction in both concentrations. Based on the phytochemical analysis, the highest total phenolic acid contents (784.6 μg g−1 and 335.2 μg g−1, respectively) were recorded in calluses grown in 100 and 200 μM melatonin-supplemented medium, compared with the calluses induced with MS alone (192.0 μg g−1). Among the five phenolic acids confirmed in the callus samples, rosmarinic acid was the major constituent. The amount of rosmarinic acid increased significantly in callus grown on 100 μM melatonin medium by nearly 5-fold (754.2 μg g−1), compared with the control group callus. Major volatiles in basil calluses were represented by 3-methylbutanal, benzaldehyde, 1,8-cineole, 2-nonenal, eugenol, and methyl eugenol, and these were in the ranges of 4 to 14%, 24 to 50%, 2 to 3%, 0 to 0.55%, and 2 to 17% (in relative percentages), respectively. The qualitative and quantitative analyses of these substances found in calluses formed on melatonin-supplemented or melatonin-free medium were evaluated separately.

  相似文献   

19.
In this work, a comprehensive study on the chemical constituents of the aerial parts of Rosmarinus eriocalyx (Lamiaceae), an aromatic shrub traditionally consumed as a food and herbal remedy in Algeria, is presented. The aroma profile was analysed by headspace solid phase microextraction (HS‐SPME) coupled with gas chromatography‐mass spectrometry (GC/MS), whereas the crude extract constituents were analyzed by 1H‐NMR and by high performance liquid chromatography coupled with mass spectrometry (HPLC/MSn). Thirty‐nine volatile compounds, most of them being monoterpenes, have been identified, with camphor, camphene, and α‐pinene as the most abundant constituents. 1H‐NMR analysis revealed the presence of phenolic compounds and betulinic acid while HPLC/MSn allowed the identification of glycosilated and aglyconic flavonoids as well as phenylpropanoid derivatives. Some of these constituents, namely as betulinic acid, rosmanol, and cirsimaritin were reported for the first time in Reriocalyx.  相似文献   

20.
The in vitro plant regeneration frequencies for immature scutella, leaf-bases/apical meristems (LB/AM) and mature embryos of four commercially important barley genotypes were compared. Production of shoots from mature embryos or calluses of LB/AM incubated on media containing 1.0 or 2.0 mg l–1 6-benzylaminopurine (BA) were comparable to regeneration frequencies obtained for scutella-derived calluses of the same genotypes. Incubation of excised mature embryos and LB/AM on media containing the plant growth regulator, thidiazuron (TDZ), resulted in an increased shoot production. However, TDZ treatment did not stimulate plant regeneration from calluses derived from scutella or LB/AM. Shoots formed from TDZ-treated mature embryos and LB/AM were induced without a callus interphase and the in vitro culture system gave a three- to eight-fold higher regeneration frequency than recorded for scutella-derived calluses on BA medium. The simplicity and rapid development of shoots using the mature embryo system could potentially be used for the regeneration and genetic transformation of barley over alternative regeneration systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号