首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Some enzymatic properties of Malbranchea β-xylosidase were investigated. The β- xylosidase activity was inhibited by Hg2+, Zn2+, Cu2+, N-bromosuccinimide, p-chloromercuribenzoate and sodium laurylsulfate, while this activity was activated by Ca2+. The enzyme released xylose as the end product even from 10% xylobiose solution without forming any xylooligosaccharides. The enzyme well acted on aryl-β-d-xylosides, but showed no activity on alkyl-β-d-xylosides, and it was practically free from glucosidase activity. The Km and Vmax values of this enzyme for xylobiose were calculated to be 2.86 × 10?8 m and 34.5 μmoles/mg/min, respectively, and these values determined for phenyl-β-d-xyloside were 3.01 × 10?8 m and 16.2 μmoles/mg/min, respectively.  相似文献   

2.
β-Xylosidase was purified 662 fold from a culture filtrate by ammonium sulfate fractionation, gel filtration on Biogel P-100, DEAE-Sephadex chromatography, and gel filtration on Sephadex G-200. With isoelectric focusing, the purified β-xylosidase found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis. The molecular weight was estimated by gel filtration to be 240,000, and 116,000 by SDS polyacrylamide gel electrophoresis. The purified β-xylosidase had an isoelectric point at pH 3.25, and contained 4% carbohydrate residue. The optimum pH was found to be in the range of 4.5 ~ 5, and the optimum temperature was 55°C. The enzyme activity was inhibited by Hg2 +, SDS, and N-bromosuccinimide at a concentration of 1 × 10?3 m, and also p-chloromercuribenzoate at a concentration of 1 × 10?4m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko = 302.6 sec?1),β-nitrophenyl β-d-xyloside (ko = 438.9 sec?1), o-nitrophenyl β-d-xyloside (ko = 431.0 sec?1), p-chlorophenyl β-d-xyloside (ko = 207.9 sec?1), o-chlorophenyl β-d-xyloside (ko = 211.8 sec?1), β-methylphenyl β-d-xyloside ko = 96.5 sec?1), o-methylphenyl β-d-xyloside (ko = 83.1 sec?1), p-methoxyphenyl β-d-xyloside (ko = 99.3 sec?1), o-methoxyphenyl β-d-xyloside (ko= 100.0 sec?1), xylobiose (ko = 992A sec?1), xylotriose (ko = 1321.9 sec?1), xylotetraose (ko = 7S9.1 sec?1) and xylopentaose (ko = 508.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of the configuration. The purified β-xylosidase was practically free of a-xylosidase and β-glucosidase activities.  相似文献   

3.
A β-xyloside hydrolytic enzyme of the fungus Chaetomium trilaterale was further purified by a modification of Kawaminami’s procedure (DEAE-Sephadex A-25 and Sephadex G-75 column chromatography), followed by isoelectric focusing. The purified preparation was homogeneous by polyacrylamide disc gel electrophoreses at pH 4.3 and pH 8.3. The purified enzyme hydrolyzed β-d-glucopyranosides as well as β-d-xylopyranosides, and the ratio of β-glucosidase activity against β-xylosidase activity increased about 3 fold during the purification steps. The molecular weight of this preparation was estimated to be about 240,000 by Sephadex G-200 gel filtration and 118,000 by SDS-polyacrylamide slab gel electrophoresis. The isoelectric point was 4.86 and the amino acid composition was also determined.

The optimum pH was at 4.2 for phenyl β-d-glucoside and around 4.5 for phenyl β-d-xyloside. The β-xylosidase activity was relatively stable but β-glucosidase activity was rapidly inactivated, at the alkaline pH range above 11. The heating of the preparation at 60°C didn’t show a parallel inactivation of the two activities. N-Bromosuccinimide strongly inactivated both enzyme activities. Nojirimycin and glucono-l,5-lactone showed a stronger inhibition on β-xylosidase activity than on β-glucosidase activity. The maximal velocities decreased in the order; phenyl β-d-glucoside > cellobiose > phenyl β-d-xyloside > xylobiose; the value with phenyl β-d-glucoside was about 28-fold higher than that with phenyl β-d-xyloside.  相似文献   

4.
β-Xylosidase was purified 25 fold from a culture filtrate by ammonium sulfate fractionation, DEAE-Sephadex chromatography, column electrophoresis, gel filtration on Biogel P-100, and isoelectric focusing. The purified β-xylosidase was found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis and on disc electrophoresis. A molecular weight of 101,000 was estimated by chromatography on Sephadex G-200, and 102,000 was obtained by SDS polyacrylamide gel electrophoresis. The purified p-xylosidase had an isoelectric point at pH 4.45, and contained 4.5% carbohydrate residue. The optimum activity for the enzyme was found to be at pH 4.5 and 55°C. The enzyme activity was inhibited by Hg2 +, and N-bromosuccinimide at a concentration of 1 x 10?3 m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko13.0 sec”1), p-nitrophenyl β-d-xyloside (ko=2l.3 sec?1), o-nitrophenyl β-d-xyloside (ko = 22.2 sec?1), o-chlorophenyl β-d-xyloside (ko = 20.0 sec?1), p-methylphenyl β-d-xyloside (ko~9.0 sec?1), o-methylphenyl β-d-xyloside (ko= 10.7 sec?1), p-methoxyphenyl β-d-xyloside (ko=10.3 sec?1), o-methoxyphenyl β-d-xyloside (&;o=10.9 sec?1), xylobiose (ko = 36A sec?1), xylotriose (ko = 34.5 sec?1), xylotetraose (ko~HA sec?1), and xylopentaose (ko= 13.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of configuration. The purified p-xylosidase was practically free of α-xylosidase and β-glucosidase activities.  相似文献   

5.
A β-mannanase was purified from the culture filtrate of Penicillium purpurogenum No. 618 by 1st and 2nd DEAE-cellulose column chromatographies, and subsequent Ultro-gel chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 57,000 and pH 4.1 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The purified mannanase contained the following amino acids: glycine > serine >glutamic acid > alanine > aspartic acid. The mannanase exhibited maximum activity at pH 5 and 70°C, and was stable in the pH range of 4.5 to 8 and at temperatures up to 65°C. The enzyme activity was not affected considerably by either metal compounds or ethyl- enediaminetetraacetic acid. Copra galactomannan (Gal: Man =1 :14) was finally hydrolyzed to galactose, mannose and β-1,4-mannobiose through the sequential actions of the purified mannanase and the α-galactosidase purified from the same strain.  相似文献   

6.
β-Glucosidases I, II, and III were isolated from the culture filtrate of a Streptomyces sp. by ammonium sulfate fractionation, hydroxylapatite column chromatography, filtration on Bio-Gel P-100, and DE-52 column chromatography. β-Glucosidase III had a single active band on disc-gel electrophoresis. Its optimum pH and temperature for activity were 6.0 and 60°C, respectively. The isoelectric point and molecular weight of the enzyme were pH 4.5 and 45,000, respectively. From an experiment using 14C-labeled glucose, gentiobiose seemed to be formed from laminaribiose as isomaltose is formed from maltose by fungal α-glucosidase. The enzyme showed transglucosylation and produced gentiobiose from β-gluco-disaccharides and 4-O-β-d-glucopyranosyl-d-manno-pyranose (epicellobiose). The enzyme acted on phenolic β-d-glucosides to produce unknown transfer products.  相似文献   

7.
Crystalline β-galactosidase was prepared from the cell extract of Saccharomyces fragilis KY5463, by procedures including protamine sulfate treatment and DEAE-cellulose, hydroxylapatite and DEAE-Sephadex column chromatographies. Crystals were formed when solid ammonium sulfate was added to solutions of the purified enzyme. This procedure resulted in a 55-fold purification with an over-all yield of l5.4%. The crystalline enzyme appeared to be homogeneous on ultracentrifugation and electrophoresis.

The sedimentation coefficient, , was determined to be 10.0 S. The molecular weight was estimated to be approximately 203,000 by the sedimentation equilibrium method of Yphantis. Electrolysis with carrier ampholytes revealed that this enzyme has an isoelectric point at around pH 4.4.

The enzyme was activated by K+ in addition to bivalent cations, such as Mn2+, Mg2? and Co2+. The Km values for o-NPG and lactose were 4.0×10?3m and 21.0×10?3m, respectively. The enzyme is sulfhydryl dependent and was completely inactivated by mercuric ions or p-chloromercuribenzoate.  相似文献   

8.
A β-xylosidase (β-d-xyloside xylohydrolase, EC 3.2.1.37) and β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) extracted from a wheat bran culture of Aspergillus fumigatus were purified up to 90-fold and 131-fold, respectively, by ammonium sulfate precipitation, gel filtration, ion exchange chromatography, and hydroxylapatite chromatography. Molecular weights of the β-xylosidase and β-glucosidase were 360,000 and 380,000, respectively, each consisting of four identical subunits. The isoelectric points of β-xylosidase and β-glucosidase were at pH 5.4 and 4.5, respectively. The optimum temperature for the β-xylosidase was 75°C, being stable up to 65°C for 20 min and for the β-glucosidase was 65°C, being stable up to 60°C for 20 min. The optimum pH for both enzymes was about 4.5, being stable between 2 and 8 at 50°C for 20 min. Both enzymes were inhibited by Fe3+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate. The apparent Michaelis constants of the β-xylosidase were 2.0 and 23.8 mM for p-nitrophenyl-β-xyloside and xylobiose, respectively, and those of the β-glucosidase were 1.4, 11.4, and 24.8 mM for p-nitrophenyl-β-glucoside, gentiobiose, and cellobiose, respectively. To produce xylose from crude xylooligosac-charides prepared by steam-explosion of cotton seed waste (DP ≤10, 53%, total sugars = 150 g/ liter), the crude enzyme from A. fumigatus (β-xylosidase activity = 14.7 units/ml, xylanase activity = 20 units/ml) could hydrolyze the substrate at 55°C and pH 4.5 resulting in almost complete conversion to xylose (160 g/liter).  相似文献   

9.
A unique β-fructofuranosidase was purified from the extract of Bifidobacterium adolescentis G1 by anion-exchange, hydrophobic, and gel filtration chromatographies, and preparative electrophoresis. The molecular mass was 74kDa by SDS–PAGE, and the isoelectric point was pH 4.5. The enzyme was a monomeric protein. The pH optimum was at 6.1. The enzyme was stable at pH from 6.5 to 10.0, and up to 45°C. The neutral sugar content was 1.2%. The enzyme hydrolyzed 1-kestose faster than sucrose or inulin. The hydrolytic activity was strongly inhibited by Cu2+, Ag+, Hg+, and ρ-chloromercuribenzoic acid. The Km (mM) and k0 (s?1) were: 1-kestose, 1.1 and 231; sucrose, 11 and 59.0; inulin, 8.0 and 149, respectively. From the kinetic results, β-fructofuranosidase from B. adolescentis G1 was concluded to have a high affinity for 1-kestose, thus differing from invertases and exo-inulinases in substrate specificity.  相似文献   

10.
An active β-amylase was purified from germinated rice seeds by precipitation with ammonium sulfate, acid treatment, chromatographies on DEAE-cellulose and DEAE-Sephadex A-50, and gel filiations on Sephadex G-75. The purified enzyme was homogeneous in disc electrophoretic analysis.

The molecular weight was estimated to be approximately 53,000 by thin-layer gel filtration and polyacrylamide gel electrophoresis. The isoelectric point was found to be pH 5.0 by disc electrofocusing.

The optimum pH was found to be in the pH range of 5.5 to 6.5. The Km value for soluble starch was 3 mg/ml. The enzyme was inhibited by sulfhydryl reagents or heavy metal ions.

The active β-amylase was oxidatively dimerized by treatment with 0.3 m ferricyanide in 3 m urea. The dimerized enzyme was thought to be one of inert β-amylases in ungerminated rice seeds.  相似文献   

11.
Six compounds, Z- and E-fadyenolide (3, 4), 1-ally1-2,3-(methylenedioxy)-4,5-dimethoxy-benzene (5), 4-methoxy-3,5-bis (3′-methyl-2′-butenyl)-benzoic acid (6), 2,6-dihydroxy-4-methoxy-dihydrochalcone (7), and 5-hydroxy-7-methoxyflavanone (8) were isolated from three species of Jamaican Piper, Piper fadyenii, C.D.C., Piper aduncum L. and Piper hispidum Sw. Three amides (9 ~ 11) of 3,5-dimethoxy-4-oxo-5-phenylpent-2-enoic acid using piperidine, pyrrolidine and morpholine, respectively, were synthesized from compounds 3 and 4, and tested for insecticidal activity against the tick Boophilus microplus (Canestrini) and the flour feetle, Tribolium confusum Duval. In our experiment, compounds 9 ~ 11 inhibited ovogenesis of B. microplus and were toxic to T. confusum. Compounds 3 ~ 8 were found to have no activity.  相似文献   

12.
An endo β-1, 3-glucanase which is able to disrupt the cells of living yeast has been purified in homogeneous state from the culture filtrate of Flavobacterium dormitator var. glucanolyticae. The molecular weight of the enzyme was estimated to be 17,000 ~ 22,000. The mode of enzyme action has been suggested to be a “random” type of β-1, 3-glucanase. The enzyme preferes larger chains saccharides as substrate for its action, however, smaller oligosaccharides such as laminaritriose and laminaribiose are also decomposed by the enzyme. The Km values of the enzyme for laminarin, laminarihexaose, and laminaritetraose were determined to be 0.26, 1.18, and 2.00 g/liter, respectively. The ability of this enzyme to disrupt the cells of living yeast is its remarkable point, since endo β-1, 3-glucanase of a smaller oligosaccharide-producing type from most sources has been recognized to be inactive (or very weakly active) on living yeast cells.  相似文献   

13.
-Glucosidase and -xylosidase production by a yeastlike Aureobasidium sp. was carried out during solid-state and submerged fermentation using different carbon sources and crude enzymes were characterized. -Glucosidase and -xylosidase exhibited optimum activities at pH 2.0–2.5 and 3.0, respectively. These enzymes had the maximum activities at 65°C and were stable in a wide pH range and at high temperatures.  相似文献   

14.
An acid β-d-galactosidase was purified from the culture filtrate of Corticium rolfsii IFO 6146 by a combination of QAE-Sephadex A-50 and SP-Sephadex C-50 chromatography. The maximum activity of the enzyme towards p-nitrophenyl β-D-galactopyranoside was found to be at pH 2.0 to 2.5 and the enzyme was fairly active at pH 1.5 to l.8. The enzyme was quite stable over a pH range 2.0 to 8.0 at 2°C for 72 hr. The enzymic activity was clearly inhibited by Hg2+. Km value was determined to be 3.84 × 10?4 m, and Vmax was calculated to be 6.9 μ moles per min per mg for p-nitrophenyl β-d-galactopyranoside. Contrary to high activity on the synthetic galactoside, reaction velocity was small when the enzyme acted on lactose.  相似文献   

15.
An α-galactosidase from tubers of S. affinis was purified about 130 fold by ammonium sulfate fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The purified enzyme showed a single protein band on disc gel electrophoresis. The molecular weight of the enzyme was determined to be approximately 42,000 by gel filtration and 44,000 by SDS disc gel electrophoresis. The optimum reaction pH was 5.2. The enzyme hydrolyzed raffinose more rapidly than planteose. The activation energy of raffinose and planteose by the enzyme was estimated to be 7.89 and 11.4 kcal/mol, respectively. The enzyme activity was inhibited by various galactosides and structural analogs of d-galactose. Besides hydrolytic activity, the enzyme also catalyzed the transfer reaction of d-galactosyl residue from raffinose to methanol.  相似文献   

16.
A β-amylase and a pullulanase produced by Bacillus cereus var. mycoides were purified by means of ammonium sulfate fractionation, adsorption on starch and celite and Sephadex G–100 column chromatography. The purified enzymes were homogeneous in disc electrophoresis.

The β-amylase released only maltose from amylose, amylopectin, starch and glycogen, and the released maltose was in β-form. The pullulanase released maltose, maltotriose and maltotetraose from β-limit dextrin and maltotriose from pullulan, but not amylose-like substance from amylopectin.

The optimum pHs of β-amylase and pullulanase were about 7 and 6~6.5, respectively. The optimum temperatures of the enzymes were about 50°C. The enzymes were inhibited by the sulfhydryl reagents such as mercuric chloride and p-chloromercuribenzoate, and the inhibitions with p-chloromercuribenzoate were restored by the addition of cysteine. The molecular weights of β-amylase and pullulanase were estimated to be 35,000±5,000 and 110,000±20,000, respectively.  相似文献   

17.
An acid protease of Cladosporium sp. No. 45–2 was purified and crystallized by precipitation with ammonium sulfate, fractional precipitation with acetone, and pH adjustment. About 600 mg of third crystallized preparation was obtained from one liter of culture broth. The purified enzyme was chromatographically homogeneous and confirmed to be monodispersive by physicochemical criteria such as uhracentrifugal and electrophoretical analysis. The enzyme was most active at pH values between 2.5 and 2.7 toward both casein and hemoglobin and was stable at pH values from 2.5 to 7.0 on twenty hour incubation at 30°C.

Millimolar concentration of sodium lauryl sulfate markedly inhibited the enzyme, wheares diisopropyl phosphorofluoridate, sulfhydryl reagents, ethylenediaminetetra acetic acid, and divalent metal ion relatively little affected the activity. The enzyme was most resistant toward S-PI among the acid proteases tested.  相似文献   

18.
A glucanase was isolated from a culture fluid of an Arthrobacter bacterium. The purified enzyme preparations consisted of the glucanase components having the same enzymatic activity. The enzyme was stable in a broad pH range, but lost its activity rapidly at above 60°C. Optimum pH values were found to be 5.5~6.5.

The glucanase attacked the following glucan preparations and liberated a relatively small amount of reducing power: Saccharomyces cerevisiae glucan, Candida albicans glucan, Saccharomyces fragilis glucan, pachyman, curdlan and laminaran. The most prominent sugar spot on the chromatogram of the digest from yeast glucan was identified with laminan-pentaose, and the other faint spots with a series of laminaridextrins. The β-1,6 glucosidic bonds in yeast glucan were not hydrolyzed and concentrated in a soluble fraction which was found near the origin of the chromatogram.  相似文献   

19.
Candida guilliermondii H-404, isolated from soil, produced thermostable α-galactosidase, but small amounts of other glycosidases (such as β-galactosidase, α-glucosidase, and β-glucosidase). The enzyme was separated into two fractions by DEAE-Toyopearl 650M chromatography, and the two enzymes were designated galactosidase I and II. These two enzymes had the same molecular weight (270,000 by gel filtration, 64,000 by SDS-PAGE). The isoelectric points of α-galactosidase I and II were 6.16 and 6.21, respectively. These two enzymes were different from each other in pH stability, temperature stability, and effects of Fe2 + and Cu2 + ion on α-galactosidase activity. The enzyme had stronger transfer activity and wider acceptor specificity than α-galactosidases which have been reported.  相似文献   

20.
The thermophilic fungus, Humicola insolens YH-8 exhibited high β-glucosidase activity when grown in solid wheat bran medium. The β-glucosidase was purified from the culture extract by consecutive column chromatographies and found to be homogeneous on polyacrylamide gel disc electrophoresis. The molecular weight was estimated to be 250,000 by SDS-gel electrophoresis, and the isoelectric point was at pH 4.23. The enzyme had an optimum pH of 5.0, an optimum temperature of 50°C, and showed significant resistance to urea, dimethyl sulfoxide and ethyl alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号