首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A glycosidic flavonoids-rich fraction from green tea leaves was purified to isolate five glycosidic flavonoids, guided by the detection of a preventive effect on D-galactosamine-induced liver injury in rats. These were identified as a flavone C-glycoside (1) and trisaccharide flavonols (2-5) based on the spectroscopic analyses. These compounds suppressed the D-galactosamine-induced increase of plasma alanine aminotransferase and asparatate aminotransferase activities in rats.  相似文献   

2.
Isolated hepatocytes are known to maintain their physiological functions for over a week when cultured on Matrigel, artificially reconstituted from basement membrane components. Although this culture technique has been frequently used in research on hepatocyte functions, there has been a limitation on its application for small scale experiments due to some technical problems. By using micro-culture plates with 96 round-bottom wells, we succeeded in coating the wells uniformly with Matrigel. When the cultured hepatocytes were treated with either 10 mM, 15 mM, or 20 mM of acetaminophen or 1 mM, 10 mM, or 20 mM of D-galactosamine, the viability of the hepatocytes became 91.1%, 75.3%, 64.7%, and 79.0%, 43.8%, 26.2% of the non-treated control at 48 hours, respectively. Fractionated extracts of Glycyrrhiza glabra L. and Schisandra chinensis Baillon inhibited the action of acetaminophen or D-galactosamine in this model. From these results, we concluded that the microculture system presented here is capable of maintaining the in vivo characteristics of hepatocytes and is suitable for the screening of hepatoprotective substances.  相似文献   

3.
A simple procedure is described to obtain D- and L-allothreonine (D- and L-aThr). A mixture of N-acetyl-D-allothreonine (Ac-D-aThr) and N-acetyl-L-threonine (Ac-L-Thr) was converted to a mixture of their ammonium salts and then treated with ethanol to precipitate ammonium N-acetyl-L-threoninate (Ac-L-Thr·NH3) as the less-soluble diastereoisomeric salt. After separating Ac-L-Thr·NH3 by filtration, Ac-D-aThr obtained from the filtrate was hydrolyzed in hydrochloric acid to give D-aThr of 80% de, recrystallized from water to give D-aThr of >99% de. L-aThr was obtained from a mixture of the ammonium salts of Ac-L-aThr and Ac-D-Thr in a similar manner.  相似文献   

4.
We investigated in this study the effect of modified arabinoxylan from rice bran (MGN-3) and its fractions on D-galactosamine (D-GalN)-induced IL-18 expression and hepatitis in rats. Male Wistar rats were pretreated with MGN-3 or fractions of the MGN-3 hydrolysate, or with saline 1 h before administering D-GalN (400 mg/kg B.W.). The serum transaminase activities, IL-18 mRNA expression level in the liver and IL-18 concentration in the serum were determined 24 h after injecting D-GalN. Both the oral and intraperitoneal administration of MGN-3 (20 mg/kg B.W.) alleviated D-GalN-induced hepatic injury under these experimental conditions. The low-molecular-weight fraction (LMW) of MGN-3 showed the strongest protective effect on D-GalN-induced liver injury, its main sugar component being glucose. Moreover, the D-GalN-induced IL-18 expression was significantly reduced by treating with MGN-3 and LMW. The results suggest that MGN-3 and LMW could provide significant protection against D-GalN liver injury, and that IL-18 might be involved in their protective influence.  相似文献   

5.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

6.
An extracellular polysaccharide elaborated by a new species of Beijerinckia indica, named TX-1, was composed of D-glucose, L-fucose, D-glycero-D-manno-heptose, and D-glucuronic acid in a molar ratio of 5.0:1.0:2.0:0.9, in addition to 16.2% of the acetyl group. Among the polysaccharides of the Beijerinckia species, the present polysaccharide might be the first acidic type having an L-fucose residue. A methylation analysis, Smith degradation study and fragmentation analysis show that this polysaccharide consisted of non-reducing terminal D-glucose, O-4 substituted D-glucose, O-2 substituted D-glycero-D-manno-heptose, O-4 substituted D-glucuronic acid, O-3 and O-4 substituted D-glucose, and O-3 substituted L-fucose residues. A D-glucuronic acid residue was linked to the O-3 position of the L-fucose residue by an α-glycosidic linkage. Most of the D-glucose residues in the backbone chain were substituted at the O-3 position, with the side chain having non-reducing terminal D-glucose residues. It is suggested by the reaction with Con A that the anomeric configuration of the terminal D-glucose residues was β.  相似文献   

7.
Depsipeptides are peptide-like polymers consisting of amino acids and hydroxy acids, and are expected to be new functional materials for drug-delivery systems and polymer science. In our previous study, D-alanyl-D-lactate, a type of depsipeptide, was enzymatically synthesized using D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) by Y207F substitution. Thereafter, in this study, further mutagenesis was introduced, based on structural comparison between TmDdl and a well-characterized D-alanine-D-alanine ligase from Escherichia coli. The S137A/Y207F mutant showed higher D-alanyl-D-lactate and lower D-alanyl-D-alanine synthesizing activity than the Y207F mutant. This suggests that substitution at the S137 residue contributes to product selectivity. Saturated mutagenesis on S137 revealed that the S137G/Y207F mutant showed the highest D-alanyl-D-lactate synthesizing activity. Moreover, the mutant showed broad substrate specificity toward D-amino acid and recognized D-lactate and D,L-isoserine as substrates. On the basis of these characteristics, various depsipeptides can be produced using S137G/Y207F-replaced TmDdl.  相似文献   

8.
9.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

10.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

11.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

12.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

13.
Thermotolerant acetic acid bacteria belonging to the genus Gluconobacter were isolated from various kinds of fruits and flowers from Thailand and Japan. The screening strategy was built up to exclude Acetobacter strains by adding gluconic acid to a culture medium in the presence of 1% D-sorbitol or 1% D-mannitol. Eight strains of thermotolerant Gluconobacter were isolated and screened for D-fructose and L-sorbose production. They grew at wide range of temperatures from 10°C to 37°C and had average optimum growth temperature between 30-33°C. All strains were able to produce L-sorbose and D-fructose at higher temperatures such as 37°C. The 16S rRNA sequences analysis showed that the isolated strains were almost identical to G. frateurii with scores of 99.36-99.79%. Among these eight strains, especially strains CHM16 and CHM54 had high oxidase activity for D-mannitol and D-sorbitol, converting it to D-fructose and L-sorbose at 37°C, respectively. Sugar alcohols oxidation proceeded without a lag time, but Gluconobacter frateurii IFO 3264T was unable to do such fermentation at 37°C. Fermentation efficiency and fermentation rate of the strains CHM16 and CHM54 were quite high and they rapidly oxidized D-mannitol and D-sorbitol to D-fructose and L-sorbose at almost 100% within 24 h at 30°C. Even oxidative fermentation of D-fructose done at 37°C, the strain CHM16 still accumulated D-fructose at 80% within 24 h. The efficiency of L-sorbose fermentation by the strain CHM54 at 37°C was superior to that observed at 30°C. Thus, the eight strains were finally classified as thermotolerant members of G. frateurii.  相似文献   

14.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

15.
This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.  相似文献   

16.
Microorganisms producing D-β-acetylthioisobutyric acid from methyl D-β-acetylthioisobutyrate were screened from stock cultures. The D-β-acetylthioisobutyric acid-producing ability was found in 15 strains belonging to the genera Pseudomonas, Agrobacterium, Enterobacter, Cellulomonas, Rhodococcus, Brevibacterium, and Torulopsis. A strain of Pseudomonas fluorescens, IFO 3081, was selected as the best microorganism. The cells having activity (558 units/g of dry cells) could be easily prepared by cultivation at 25°C at pH 6.6 for 24 hr in a glucose-containing medium. The D-form of methyl DL-β-acetylthioisobutyrate was selectively hydrolyzed with the cells so that D-β-acetylthioisobutyric acid (97.2% enantiomeric excess) was produced in a high yield.  相似文献   

17.
A growth factor (TJF) for a malo-lactic fermentation bacterium (Leuconostoc sp.) has been found to be 4′-O-(β-D-glucopyranosyl)-D-pantothenic acid with structural and synthetical studies. Now other 4′-O-glycosides (β-D-ribofuranosyl, α-D-glucopyranosyl, β-D-galacto-pyranosyl, β-maltosyl and β-cellobiosyl) and 2′,4′-O-di-β-D-glucopyranoside of DL-pantothenic acid, and 4′-O-β-D-glucopyranoside of DL-pantethine were synthesized to examine their biological activities. The improved syntheses of TJF were also examined.  相似文献   

18.
β-N-Acetyl-D-hexosaminidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purifted by making an acetone-dried preparation of the mid-gut gland, extracting with 50 mM citrate-phosphate buffer (pH 4.0) (about 13% of the extracted proteins was β-N-acetyl-D-hexosaminidase), ammonium sulfate fractionation, and column chromatographies on CM-Sepharose and DEAE-Sepharose. The purifted β-N-acetyl-D-hexosaminidase was homogeneous on SDS–PAGE, and sufficiently free from other exo-type glycosidases. The molecular weight was 56,000 by SDS–PAGE. The enzyme hydrolyzed both p-nitrophenyl β-N-acetyl-D-glucosaminide and p-nitrophenyl β-N-acetyl-D-galactosaminide. For p-nitrophenyl β-N-acetyl-D-glucosaminide, the pH optimum was 3.7, the optimum temperature was 45°C, and the Km was 0.24 mM. For p-nitrophenyl β-N-acetyl-D-galactosaminide, these were pH 3.4, 45°C, and 0.15 mM, respectively. The enzyme liberated non-reducing terminal β-Iinked N-acetyl-D-glucosamine or N-acetyl-D-galactosamine from various 2-aminopyridyl derivatives of oligosaccharides of N-glycan or glycolipid type except of GM2-tetrasaccharide. As the enzyme was stable around pH 3.5–5.5, it may be useful for long time reactions around the optimum pH.  相似文献   

19.
A new H2O2-generating pyranose oxidase was purified as a strong antifungal protein from an arbuscular mycorrhizal fungus, Tricholoma matsutake. The protein showed a molecular mass of 250 kDa in gel filtration, and probably consisted of four identical 62 kDa subunits. The protein contained flavin moiety and it oxidized D-glucose at position C-2. H2O2 and D-glucosone produced by the pyranose oxidase reaction showed antifungal activity, suggesting these compounds were the molecular basis of the antifungal property. The V max, K m, and k cat for D-glucose were calculated to be 26.6 U/mg protein, 1.28 mM, and 111/s, respectively. The enzyme was optimally active at pH 7.5 to 8.0 and at 50°C. The preferred substrate was D-glucose, but 1,5-anhydro-D-glucitol, L-sorbose, and D-xylose were also oxidized at a moderate level. The cDNA encodes a protein consisting of 564 amino acids, showing 35.1% identity to Coriolus versicolor pyranose oxidase. The recombinant protein was used for raising the antibody.  相似文献   

20.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号