首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse aldehyde oxidase (mAOX1) forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Eschericia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.  相似文献   

2.
The SLC38 family of solute transporters mediates the coupled transport of amino acids and Na+ into or out of cells. The structural basis for this coupled transport process is not known. Here, a profile-based sequence analysis approach was used, predicting a distant relationship with the SLC5/6 transporter families. Homology models using the LeuTAa and Mhp1 transporters of known structure as templates were established, predicting the location of a conserved Na+ binding site in the center of membrane helices 1 and 8. This homology model was tested experimentally in the SLC38 member SNAT2 by analyzing the effect of a mutation to Thr-384, which is predicted to be part of this Na+ binding site. The results show that the T384A mutation not only inhibits the anion leak current, which requires Na+ binding to SNAT2, but also dramatically lowers the Na+ affinity of the transporter. This result is consistent with a previous analysis of the N82A mutant transporter, which has a similar effect on anion leak current and Na+ binding and which is also expected to form part of the Na+ binding site. In contrast, random mutations to other sites in the transporter had little or no effect on Na+ affinity. Our results are consistent with a cation binding site formed by transmembrane helices 1 and 8 that is conserved among the SLC38 transporters as well as among many other bacterial and plant transporter families of unknown structure, which are homologous to SLC38.The sodium-coupled neutral amino acid transporter, SNAT2,2 belongs to the SLC38 gene family of solute carrier proteins (1). Together with SNAT1 and -4 (2), it is believed to mediate Na+-dependent amino acid transport activity that was classically assigned to System A transporters (38). In addition to SNAT1 and -2, the SLC38 family has four other known members, two of which predominantly mediate glutamine transport (SNAT3 and -5, System N (911)). SNAT2 is widely expressed in mammalian tissue (1, 7), but it may play a particularly critical role in the brain (12), where it may help shuttle glutamine from astrocytes to neurons via the glutamate-glutamine cycle (1). This process is essential for recycling the neurotransmitter glutamate (13). However, the exact contribution of SNAT2 to the glutamate-glutamine cycle is still controversially discussed (14).Despite this physiological importance, surprisingly little is known about the functional properties and the structural basis of amino acid transport by the SLC38 proteins. Although hydropathy analysis predicts 11 transmembrane helices (TMs), with an intracellular N terminus and an extracellular C terminus (1), it is not clear whether the transporters belong to a large superfamily of transporters, of which members have been characterized structurally through x-ray crystallography. At present, sequence homology has only been established with transporters of the mammalian SLC32 and SLC36 families as well as with the more distantly related plant auxin carriers and the bacterial amino acid-polyamine-organocation (APC) family (15, 16). High resolution crystal structures are not available for any of the transporters from these families, although low resolution projection structures were recently reported for the APC family members AdiC (17) and SteT (18). However, these structures do not allow the assignment of transmembrane helices. Thus, it remains unknown whether the SLC38 fold is similar to established transport protein folds, although homology to the major facilitator superfamily seems unlikely.We have recently identified a conserved amino acid residue in SNAT2, Asn-82, which is involved in controlling the Na+ affinity of the transporter (19). Interestingly, Asn-82 is localized in the predicted TM1 of SNAT2. This first transmembrane helix was recently found to contribute ligands to a Na+ binding site in several bacterial transporters, which are related to the SLC5 (sodium glucose symporter) and SLC6 (sodium- and chloride-dependent neurotransmitter transporter) family members (2022), which also comprises bacterial members (23, 24). Although sequence similarity with SLC5 and -6 is not detectable, SLC38 may be a member of a possibly very large superfamily with the same general fold, which also contains many amino acid transport proteins.Here, we used a homology modeling approach based on profile-based sequence alignment (25, 26). A search against sequences deposited in the Protein Data Bank (PDB (27)) revealed that the transporters with the highest likelihood to share an analogous fold are a leucine transporter from Aquifex aeolicus, LeuTAa, and a homologous hydantoin transporter from Microbacterium liquefaciens, Mhp1. We established a homology model based on these structures, which predicts Asn-82 to be part of a Na+ binding site. Furthermore, another conserved hydrophilic amino acid residue in TM8, Thr-384, was predicted to be near this cation binding site. When Thr-384 was mutated to alanine, a dramatic loss of the affinity of SNAT2 for Na+ was observed, whereas mutations to other sites that were spatially removed from the predicted Na+ binding site had little or no effect on Na+ affinity. We hypothesize that the SLC38 family is a member of a large superfamily of cation/organic substrate transporters which includes the mammalian SLC5 and -6 proteins and which has a conserved cation binding site formed by TMs 1 and 8.  相似文献   

3.
Abstract

Crown ether 4 as a receptor core for protonated primary amines such as amino acids has been synthesized and incorporated into oligodeoxynucleotides as dangling ends.  相似文献   

4.
Abstract

The B3LYP/6–311+G(d,p) method and three ONIOM extrapolation methods ONI-OM (B3LYP/6–311+G(d,p): AM1); ONIOM(B3LYP/6–311+G(d,p): MNDO); ONIOM (B3LYP/6–311+G(d,p): HF/3-21G(d)) were used to characterize the complexes of Zn2+ cation with anionic sulfonylated amino acid hydroxamates (RSO2NH-AA-CON(-)OH), possessing an unsubstituted RSO2NH—amino acyl moiety. According to the R moiety we distinguish between pentafluorophenyl and 4-methoxyphenyl derivates. The amino acid hydroxamates included in the study were the Gly, Ala, and Leu derivates. Of the inhibitors investigated, the weakest zinc affinity exhibits the pentafluorophenyl derivate with Gly amino acid and the strongest affinity the 4-methoxyphenyl derivate with Leu amino acid. The inhibitors form bidentate coordination bonds with the zinc cation by means of the sulfonyl oxygen and the ionized hydroxamate nitrogen atoms, respectively. The zinc affinities computed using the B3LYP/6–311 +G(d,p)//HF/6–31 +G(d,p) method are in very good agreement with the full density functional theory (DFT) B3LYP/6–311+G(d,p)//B3LYP/6- 311+G(d,p) method and this method can be adopted to model larger complexes of inhibitors with the active site of carbonic anhydrase.  相似文献   

5.
5-Formyltetrahydrofolate is a compound that is administered as a rescue agent in methotrexate chemotherapy and in 5-fluorouracil chemotherapy for synergistic effects. It has also recently been suggested to play a role in bacterial resistance to antifolate therapy. 5,10-methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme known to catalyze the conversion of this compound to 5,10-methenyltetrahydrofolate along with the hydrolysis of ATP to ADP. To better understand the roles of specific amino acids in the ATP binding pocket of this enzyme, we used site-directed mutagenesis to create 10 modified forms of the Mycoplasma pneumoniae ortholog. The Michaelis constant (Km) for each substrate and the turnover number (kcat) was determined for each mutant to help elucidate the role of individual amino acids. Data were compared to crystal structures of human and M. pneumoniae orthologs of MTHFS. Results were largely consistent with a simple coulombic and proximity model; the larger the predicted charges of an interaction and the closer those interactions were to the phosphate transferred between the substrates, the greater the reduction in ATP binding and catalytic activity of the enzyme.  相似文献   

6.
多官能化手性氨基酸及其衍生物是一类重要的手性药物以及合成手性药的关键中间体,如现在大量用于临床的左甲状腺素、赖诺普利、阿莫西林、缬沙坦、头孢氨苄以及青霉素等。进行多官能化手性氨基酸类化合物的不对称催化合成,可为新型化学药的设计与发现开辟新的视野。噁唑烷酮(Azlactone)被证明是合成四取代氨基酸衍生物的优秀底物。可通过不对称催化手段向其中引入需要的基团,再经多取代的噁唑烷酮直接开环得到一系列的目标化合物。本文主要综述了近年来基于恶唑烷酮的不对称催化反应构建四取代氨基酸类化合物的研究。  相似文献   

7.
The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC.  相似文献   

8.
We compared two haploid genotypes of one Ciona savignyi individual and identified codons at which these genotypes differ by two nonsynonymous substitutions. Using the C. intestinalis genome as an outgroup, we showed that both substitutions tend to occur in the same genotype. Only in 53 (34.4%) of 154 codons, one substitution occurred in each of the two genotypes, although 77 (50%) of such codons are to be expected if substitutions were independent. We considered two feasible evolutionary causes for the observed pattern: substitutions driven by positive selection and compensatory substitutions, as well as several potential biases. However, none of these explanations is fully compelling, and data on multiple genotypes of C. savignyi would help to elucidate the causes of this pattern.  相似文献   

9.
Transglutaminase2 (TG2) is a multi-functional protein involved in various cellular processes, including apoptosis, differentiation, wound healing, and angiogenesis. The malfunction of TG2 causes many human disease including inflammatory disease, celiac disease, neurodegenerative diseases, tissue fibrosis, and cancers. Protein cross-linking activity, which is representative of TG2, is activated by calcium ions and suppressed by GTP. Here, we elucidated the structure of TG2 in complex with its endogenous inhibitor, GTP. Our structure showed why GTP is the optimal nucleotide for interacting with and inhibiting TG2. In addition, sequence comparison provided information describing the evolutionary scenario of GTP usage for controlling the activity of TG2.  相似文献   

10.
We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.  相似文献   

11.
Abstract: Mitochondrial complexes I, II, and III were studied in isolated brain mitochondrial preparations with the goal of determining their relative abilities to reduce O2 to hydrogen peroxide (H2O2) or to reduce the alternative electron acceptors nitroblue tetrazolium (NBT) and diphenyliodonium (DPI). Complex I and II stimulation caused H2O2 formation and reduced NBT and DPI as indicated by dichlorodihydrofluorescein oxidation, nitroformazan precipitation, and DPI-mediated enzyme inactivation. The O2 consumption rate was more rapid under complex II (succinate) stimulation than under complex I (NADH) stimulation. In contrast, H2O2 generation and NBT and DPI reduction kinetics were favored by NADH addition but were virtually unobservable during succinate-linked respiration. NADH oxidation was strongly suppressed by rotenone, but NADH-coupled H2O2 flux was accelerated by rotenone. α-Phenyl- N-tert -butyl nitrone (PBN), a compound documented to inhibit oxidative stress in models of stroke, sepsis, and parkinsonism, partially inhibited complex I-stimulated H2O2 flux and NBT reduction and also protected complex I from DPI-mediated inactivation while trapping the phenyl radical product of DPI reduction. The results suggest that complex I may be the principal source of brain mitochondrial H2O2 synthesis, possessing an "electron leak" site upstream from the rotenone binding site (i.e., on the NADH side of the enzyme). The inhibition of H2O2 production by PBN suggests a novel explanation for the broad-spectrum antioxidant and antiinflammatory activity of this nitrone spin trap.  相似文献   

12.
CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies.  相似文献   

13.
14.
15.
Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity. Alone, sialic acid–dependent binding of MAG to neurons is insufficient to effect inhibition of axonal growth. Thus, while soluble MAG-Fc (MAG extracellular domain fused to Fc), a truncated form of MAG-Fc missing Ig-domains 4 and 5, MAG(d1-3)-Fc, and another sialic acid binding protein, sialoadhesin, each bind to neurons in a sialic acid– dependent manner, only full-length MAG-Fc inhibits neurite outgrowth. These results suggest that a second site must exist on MAG which elicits this response. Consistent with this model, mutation of arginine 118 (R118) in MAG to either alanine or aspartate abolishes its sialic acid–dependent binding. However, when expressed at the surface of either CHO or Schwann cells, R118-mutated MAG retains the ability to inhibit axonal outgrowth. Hence, MAG has two recognition sites for neurons, the sialic acid binding site at R118 and a distinct inhibition site which is absent from the first three Ig domains.  相似文献   

16.
Antibiotic chloramphenicol (CHL) binds with a moderate affinity at the peptidyl transferase center of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving properties of this inhibitor, we explored ribosome binding and inhibitory activity of a number of amino acid analogs of CHL. The L-histidyl analog binds to the ribosome with the affinity exceeding that of CHL by 10 fold. Several of the newly synthesized analogs were able to inhibit protein synthesis and exhibited the mode of action that was distinct from the action of CHL. However, the inhibitory properties of the semi-synthetic CHL analogs did not correlate with their affinity and in general, the amino acid analogs of CHL were less active inhibitors of translation in comparison with the original antibiotic. The X-ray crystal structures of the Thermus thermophilus 70S ribosome in complex with three semi-synthetic analogs showed that CHL derivatives bind at the peptidyl transferase center, where the aminoacyl moiety of the tested compounds established idiosyncratic interactions with rRNA. Although still fairly inefficient inhibitors of translation, the synthesized compounds represent promising chemical scaffolds that target the peptidyl transferase center of the ribosome and potentially are suitable for further exploration.  相似文献   

17.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

18.
用定量免疫沉淀法和定量免疫沉淀抑制法研究了从木菠萝(Arthrocarpus integrifolia)种子提取的凝集素(jacalin)结合部位糖的特异性。Jacalin最强烈地沉淀含有DGalβ1→3DGalNAc结构的无活性抗冻糖蛋白,不同程度非特异地沉淀各种血型物质。研究发现凝集素结合部位对DGalβ→3DGalNAc有最高特异性。最强抑制剂是DGalβ1→3DGalNAcal→φNO_2,其抑制活性分别比DGalNAc和DGal高380倍和1000倍。对于各种甲基化或对硝基酚化的糖苷以及寡糖,除methylaDGalNAc_f外,仅α-构型表现出抑制活性,所有β-构型的糖苷均无抑制活性,jacalin结合部位对糖的结合是构型依赖性的。  相似文献   

19.
One‐handed helical polyphenylacetylenes having achiral amino alcohol moieties, but no chiral side groups, were synthesized by the helix‐sense‐selective copolymerization of an achiral phenylacetylene having an amino alcohol side group with a phenylacetylene having two hydroxyl groups. Since the resulting helical copolymers were successfully utilized as chiral ligands for the enantioselective alkylation of benzaldehyde with diethylzinc, we can conclude that the main‐chain chirality based on the one‐handed helical conformation is useful for the chiral catalysis of an asymmetric reaction for the first time. The enantioselectivities of the reaction were controlled by the optical purities of the helical polymer ligands. In addition, the polymer ligands could be easily recovered by precipitation after the reaction. Chirality 27:454–458, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
利用PCR引导的基因突变技术,对位于甲型肝炎病毒农壳蛋白VP1上的细胞受体结合区进行氨基酸定点突变。结果发现当第1143、1187、1202和1225位氨基酸发生突变时,突变株病毒在细胞中的增殖动力学改变,病毒增殖量呈不同程度减少,提示这些位置上的氨基酸可能与细胞受体结合。若发生突变将影响病毒对敏感细胞的吸附和脱衣壳过程,使病毒感染力下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号