首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The growth of Bacillus subtilis TR–44, a prototrophic transductant from one of inosine producers, was completely inhibited by 200 µg/ml of 5-fiuorotryptophan, a tryptophan analogue, and the inhibition was reversed by the addition of L-tryptophan.

Several mutants resistant to 5FT* produced L-tryptophan in the growing cultures. The best producer, strain FT–39, which was selected on a medium containing 1500 µg/ml of 5FT, produced 2 g/liter of L-tryptophan, when cultured in a medium containing 8% of glucose but without any tryptophan precursors. In this mutant, anthranilate synthetase, a key enzyme of the tryptophan biosynthesis, had increased over 280-fold, presumably owing to a genetic derepression. From FT–39, mutants resistant to 7000 µg/ml of 5FT were derived. Among them, strain FF–25 produced 4 g/liter of L-tryptophan, twice as much as did the parental strain. Since this strain produced large amount of L-phenylalanine as well as L-tryptophan, the genetic alteration seemed to be involved in some metabolic regulation of common part of the aromatic amino acid biosynthetic pathway.

Further, some auxotrophs derived from these 5FT resistant mutants produced more L-tryptophan than did the parental strains.

Relationships between the accumulation of L-tryptophan and the regulation mechanisms of the L-tryptophan biosynthesis were discussed.  相似文献   

2.
Azaserine-resistant mutants derived from a 5-fluorotryptophan-resistant, l-tryptophan-producing mutant of Brevibacterium flavum, accumulated 10.3 g/liter of l-tryptophan at maximum. The production increased to 11.4 g/liter when l-serine was added. In the mutant, only anthranilate synthase among enzymes of the tryptophan-specific bio synthetic pathway increased in activity to a 2-fold higher level than that in the parent strain, No. 187. Sensitivity of anthranilate synthase to the feedback inhibition was not altered by the mutation. Activity of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first common enzyme for aromatic amino acid biosynthesis, also increased 2.7-fold and was less sensitive to the feedback inhibition by phenylalanine and tyrosine. Tryptophan transport activity in strain A-100 was similar as that in the parent. Azaserine inhibited anthranilate synthase activity by 50% at 0.075 mm. The inhibition was of a mixed type with respect to both the two substrates. Anthranilate synthase of strain A-100 was inhibited in a similar manner to that of the parent.  相似文献   

3.
1. Some of 5-methyltrypotophan (5MT)-resistant mutants derived from glutamate-producing bacteria such as Brevibacterium flavum, Corynebacterium acetoglutamicum and Micrococcus glutamicus produced a small amount of l-tryptophan, while tyrosine and phenylalanine auxotrophs of B. flavum did not.

2. 5-MT-resistant mutant derived from the auxotroph for tyrosine and phenylalanine produced 390 mg/liter of l-tryptophan at most. A mutant resistant to a higher concentration of 5MT, which was derived from a tyrosine and phenylalanine auxotrophic mutant which was resistant to a low concentration of 5MT, produced 660 mg/liter of l-tryptophan. Using this mutant, the effects of the concentrations of components of the culture medium on the l-tryptophan production were examined. The high concentration of l-tyrosine, but not l-phenylalanine, inhibited the l-tryptophan production. Using the improved culture medium, this strain produced 1.9 g/liter of l-tryptophan.  相似文献   

4.
A 5-fluorotryptophan-resistant mutant of Brevibacterium flavum, No. 187, accumulated 2.6 g of indole 3-glycerol (InG) in addition to 8.0 g of l-tryptophan per liter in the culture medium. The addition of l-serine to the medium decreased the accumulation of InG and increased that of l-tryptophan up to a concentration of 10.3 g/liter, while the addition of l-tryptophan increased the InG accumulation, suggesting that InG was formed by hydrolysis of indole 3-glycerol phosphate (InGP), the substrate of tryptophan synthase (TS) which catalyzed the final step reaction of tryptophan biosynthesis. Then, in order to examine the mechanism of the InG accumulation, TS was purified from tryptophan auxotroph, TA-60. The reaction mechanism of TS was Ordered Bi Bi with Km’s of 0.63 and 0.038 mm for serine and InGP, respectively. Tryptophan, a product of the TS reaction, inhibited TS competitively with respect to serine and the Ki for tryptophan was estimated to be 2.0 mm. On the other hand, anthranilate synthase (AS), the first enzyme in the tryptophan biosynthetic pathway, was much less sensitive to the feedback inhibition by tryptophan in strain No. 187 than in the wild strain. The tryptophan concentration giving 50% inhibition of AS in strain No. 187 was estimated to be 2.4 mm, almost comparable to that of TS, 7.7 mm. From these results, it was concluded that the accumulation of InG in strain No. 187 would result from the product inhibition of TS by the tryptophan accumulated.  相似文献   

5.
Growth of Brevibacterium flavum FA-1-30 and FA-3-115, L-lysine producers derived from Br. flavum No. 2247 as S-(2-aminoethyl)-L-cysteine (AEC) resistant mutants, was inhibited by α-amino-β-hydroxyvaleric acid (AHV), and this inhibition was reversed by L-threonine. All the tested AHV resistant mutants derived from FA-1-30 accumulated more than 4 g/liter of L-threonine in media containing 10% glucose, and the best producer, FAB-44, selected on a medium containing 5 mg/ml of AHV produced about 15 g/liter of L-threonine. Many of AHV resistant mutants selected on a medium containing 2 mg/ml of AHV accumulated L-lysine as well as L-threonine, AHV resistant mutants derived from FA-3-115 produced 10.7 g/liter of L-threonine maximally. AEC resistant mutants derived from strains BB–82 and BB–69, which were L-threonine producers derived from Br. flavum No. 2247 as AHV resistant mutants, did not produce L-threonine more than the parental strains, and moreover, many of them did not accumulate L-threonine but L-lysine. Homoserine dehydrogenases of crude extracts from L-threonine producing AHV resistant mutants derived from FA–1–30 and FA–3–115 were insensitive to the inhibition by L-threonine, and those of L-threonine and L-lysine producing AHV resistant mutants from FA–1–30 were partially sensitive.

Correlation between L-threonine or L-lysine production and regulations of enzymatic activities of the mutants was discussed.  相似文献   

6.
Regulatory properties of the enzymes involved in aromatic amino acid biosynthesis in the mutant of Corynebacterium glutamicum which produces a large amount of aromatic amino acids were examined. A phenylalanine auxotrophic l-tyrosine producer, pr-20, had a 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthetase released from the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a two-fold derepressed chorismate mutase. A pair of l-phenylalanine and l-tyrosine still strongly inhibited the chorismate mutase activity, though the enzyme was partially released from the inhibition by l-phenylalanine alone. A tyrosine auxotrophic l-phenylalanine producer, PFP-19-31, had a DAHP synthetase sensitive to the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a prephenate dehydratase and a chorismate mutase both partially released from the feedback inhibition by l-phenylalanine. The mutant produced a large amount of prephenate as well as l-phenylalanine. A phenylalanine and tyrosine double auxotrophic l-tryptophan producer, Px-115-97, had an anthranilate synthetase partially released from the feedback inhibition by l-tryptophan and had a DAHP synthetase sensitive to the feedback inhibition. These data explained the mechanism of the production of aromatic amino acids by these mutants and supported the in vivo functioning of the control mechanisms of aromatic amino acid biosynthesis in C. glutamicum previously elucidated in vitro experiments.  相似文献   

7.
5-Fluorotryptophan (5FT), indolmycin (IM), 4-fluorotryptophan and 7-azatryptophan were found on screening to be tryptophan antagonists among various chemically synthesized and naturally occurring tryptophan analogues for the isolation of l-tryptophan (l-Trp) producing mutants of Bacillus subtilis K.

From among 5FT resistant mutants, potent l-Trp producers were obtained using an improved isolation medium. Growth of the isolated 5FT-resistant l-Trp producer, AJ 11709, was inhibited by IM. From among 5FT and IM resistant mutants, the best strain, AJ 11979, which produced 9.0 g/liter of l-Trp from 13% glucose on 120hr cultivation, was selected.  相似文献   

8.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

9.
The growth of Brevibacterium flavum No. 2247A was inhibited by α-amino-β-hydroxy-valeric acid (AHV), and the inhibition was partially reversed by L-isoleucine.

AHV resistant strain ARI-129, which was isolated on a medium supplemented with 2 mg/ml of AHV, produced 11 g/liter of L-isoleucine.

No difference was observed in threonine dehydratase between No. 2247A and ARI–129. Homoserine dehydrogenase from ARI–129 was insensitive to the feedback inhibition by L-isoleucine and L-threonine.

O-Methyl-L-threonine resistant mutant, strain AORI–126, which was derived from ARI–129, produced 14.5 g/liter of L-isoleucine. Specific activity of threonine dehydratase from AORI–126 increased about two-fold higher than those from No. 2247A and ARI–129, whereas degree of inhibition of the enzyme by L-isoleucine was the same among three strains.

Among auxotrophic mutants derived from ARI–129, adenine and lysine auxotrophs produced more L-isoleucine than the parent did.

In the adenine auxotroph, L-isoleucine production was markedly reduced by the addition of excess adenine.  相似文献   

10.
A novel process for the microbial production of l-glutamic acid on an industrial scale was successfully established by using a glycerol auxotroph.

The most suitable carbon source for producing L-glutamic acid was n-paraffins (C13–C15). The production of L-glutamic acid was not affected by a large amount of biotin or oleic acid in the absence of penicillin, and occurred maximally at the glycerol concentration of 0.02% at pH 6.6. The most effective temperature was 28°C.

Under optimal conditions in a 200 liter fermentor, the mutant produced 72 g/liter of L-glutamic acid. On the other hand, the parent produced 53 g/liter of L-glutamic acid in the presence of penicillin.

It is believed that the low productivity of L-glutamic acid by the parent strain was mainly due to the occurrence of the marked decrease in the viable cell counts at the later phase of the fermentation caused by the action of penicillin added.  相似文献   

11.
ABSTRACT

Tyrosinase is the key enzyme that controls melanin formation. We found that a hot water extract of the lyophilized fruiting body of the fungus Lyophyllum decastes inhibited tyrosinase from Agaricus bisporus. The extract was fractionated by ODS column chromatography, and an active compound was obtained by purification through successive preparative HPLC using an ODS and a HILIC column. Using spectroscopic data, the compound was identified to be an uncommon amino acid, 6-hydroxytryptophan. 6-Hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan were prepared through a Fenton reaction from L-tryptophan and D-tryptophan, respectively. The active compound was determined to be 6-hydroxy-L-tryptophan by comparison of their circular dichroism spectra and retention time on HPLC analysis of the Nα-(5-fluoro-2,4-dinitrophenyl)-L-leuciamide derivative with those of 6-hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan. A Lineweaver–Burk plot of the enzyme reaction in the presence of 6-hydroxy-L-tryptophan indicated that this compound was a competitive inhibitor. The IC50 values of 6-hydroxy-L-tryptophan was 0.23 mM.  相似文献   

12.
p-Fluorophenylalanine (PFP) and m-fluorophenylalanine were the most effective inhibitors on the growth of Corynebacterium glutamicum ATCC 13032 among the analogs of phenylalanine and tyrosine tested. Their inhibitory effects were released by L-phenylalanine, and slightly by L-tyrosine and L-tryptophan. 3-Aminotyrosine (3AT), p-aminophenylalanine, o-fluorophenylalanine, and β-2-thienylalanine were weak inhibitors.

Resistant mutants of C. glutamicum isolated on the medium containing both PFP and 3AT or PFP and L-tyrosine were found to accumulate both L-tyrosine and L-phenylalanine, while resistant mutants isolated on the medium containing only PFP were found to produce only L-phenylalanine. Resistant mutants from other glutamic acid producing bacteria isolated on the medium containing both PFP and 3AT or both PFP and L-tyrosine were found to accumulate L-tyrosine and L-phenylalanine.  相似文献   

13.
Excellent l-glutamine producers were screened for among sulfaguanidine resistant mutants derived from the wild type l-glutamic acid-producing bacteria, Brevibacterium flavum, Brevibacterium lac to fermentum, Corynebacterium glutamicum and Microbacterium ammoniaphilum.

The best strain, No. 1~60, was a sulfaguanidine resistant mutant derived from B. flavum 2247 by mutation. Strain No. 1~60 accumulated 41.0 mg/ml of l-glutamine after 48 hr of cultivation from 10% glucose as a carbon source. This yield was the highest among those so far reported.

The addition of Mn2 + (2 ppm) to the standard medium for B. flavum 2247 decreased the l- glutamine production and increased the l-glutamic acid excretion markedly. On the contrary, strain 1 —60 was not affected the Mn2+ (2 ppm) addition at all.

Glutamate kinase activity and the intracellular content of ATP in sulfaguanidine resistant mutant No. 1~60 were higher than those in the parent strain, B. flavum 2247.

It was confirmed that the increase in glutamate kinase and the increase in internal ATP, which were important for the l-glutamine synthesis, were very effective for the improvement of l-glutamine-producing mutants.  相似文献   

14.
An isoleucine leaky auxotroph of Arthrobacter paraffineus, which was isolated by Takayama et al.3) as a mutant producing L-threonine and L-valine from n-paraffin, was subjected to further mutagenesis in an attempt to obtain better L-threonine producers. Some of the double auxotrophs derived from the isoleucine auxotroph and some of their revertants with respect to isoleucine requirement produced more L-threonine than the original isoleucine auxotroph. In contrast to the original isoleucine auxotroph, a revertant derived from a methionine plus isoleucine double auxotroph, KY7135, produced an increased amount of L-threonine and a decreased amount of L-valine. The optimum level of L-methionine for L-threonine production in KY7135 was much higher (1000 ~ 2000 μg/ml) with n-paraffin medium than with sorbitol or mannitol medium (10 ~ 50 μg/ml). L-Threonine production reached a maximum level (11.5 mg/ml) in 7 days incubation with the medium containing 10% n-paraffin (C12 ~ C14 rich). Several mutants which produce L-threonine more than 12 mg/ml were obtained from KY 7135 by monocolony isolation procedure.  相似文献   

15.
Penicillin-resistant mutants were derived from Corynebacterium hydrocarboclastus R-7. One of them produced 84 g/liter of l-glutamic acid from hydrocarbon, though its parent strain produced 26 g/liter.

The penicillin-resistant mutant had stronger activities of substrate consumption and oxygen absorption than the parent strain, and this was one of the reasons for the accumulation of a larger quantity of l-glutamic acid.

The interacellular content of phosphatidyl inositol mannoside (P.I.M) was related to the glutamate productivity, and the higher glutamate productivity of the penicillin-resistant mutant was supposed to be related to the remarkable diminution in the content of P.I.M.  相似文献   

16.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

17.
Excellent l-proline producers were screened for among sulfaguanidine resistant mutants derived from three typical l-glutamic acid-producing bacteria: Brevibacterium flavum, B. lactofermentum, and C. glutamicum.

The best strain, No. 199, is a sulfaguanidine resistant mutant derived from an isoleucine auxotroph of B. flavum 2247 by nitrosoguanidine. Strain No. 199 produced 35 mg/ml of l-proline after 72 hr of cultivation with 10% glucose as a carbon source. The strain also accumulated purine bases such as adenine, guanine, and hypoxanthine, i.e., degradation products of purine nucleotides. In the mutant, 1.6 ~ 2.0 fold more intracellular ATP was found than that in the parent strain; it is a substrate of glutamate kinase relating to l-proline biosynthesis.

On the contrary, the levels of intracellular glutamic acid, a substrate of glutamate kinase, were similar among these strains.

It was confirmed that the increment of internal ATP, which was important in the l-proline production mechanism, was very effective in the improvement of l-proline producers.  相似文献   

18.
We investigated the contribution percentage of tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) to the conversion of d-tryptophan to nicotinamide in TDO-knockout mice. The calculated percentage conversions indicated that TDO and IDO oxidized 70 and 30%, respectively, of the dietary l-tryptophan. These results indicate that both TDO and IDO biosynthesize nicotinamide from d-tryptophan and l-tryptophan in mice.  相似文献   

19.
The regulatory mechanism for l-tryptophan (l-Trp) synthesis was compared between the wild type strain and l-Trp producing mutants of B. subtilis K. In the wild type strain, indolmycin (IM) repressed the synthesis of anthranilate synthetase (AS) more strongly than 5-fluorotryptophan ? (5FT), which repressed AS to the same extent as l-Trp did. 5FT inhibited the activity of AS as strongly as l-Trp did, while IM had no inhibitory effect. In the 5FT resistant strains, the syntheses of AS and tryptophan synthetase (TS-B) were markedly increased by genetic derepression, while AS remained still sensitive to the feedback inhibition by l-Trp. The facts that IM repressed the syntheses of AS and TS-B in the strain which was 5FTr and IMS, and did not repress those in the IM-resistant mutant suggested that IM acts as a co-repressor in a different way from 5FT.  相似文献   

20.
Accumulation of L-isoleucine and L-valine was studied on 14 genera, 47 species and 110 strains of aerobic bacteria using bacterial type cultures. A large amount of L-isoleucine and a small amount of L-valine accumulated when 1% of DL-α-aminobutyric acid was added to the culture medium. As a rule, facultative aerobes such as Aerobacter, Erwinia, Serratia and Bacillus showed good accumulation. In the absence of α-aminobutyric acid, powerful L-isoleucine accumulators produced a large amount of L-valine, although the accumulation of L- isoleucine was scarcely observed under that condition. In the presence of α-aminobutyric acid, the accumulation of L-valine was generally suppressed, but in several strains, on the contrary, the accumulation increased as well as that of L-isoleucine. When DL-threonine was used instead of α-aminobutyric acid, the amount of L-isoleucine accumulated was not as high as that with α-aminobutyric acid in almost all strains except Serratia marcescens. It was concluded that a distinct relationship between bacterial genera or species and accumulation of L-isoleucine did not exist, that is, powerful accumulators were limited to special strains, and that the addition of α-aminobutyric acid was necessary for the accumulation of a large amount of L-isoleucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号