首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3α-Hydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α,12α-Dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α,7α,12α-Trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3α,Acetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3α,7α,12α-Triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I50 values and Ki constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 ± 0.0274 mM, 0.0042 ± 0.0009 mM, and 3.1446 ± 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I50 values and Ki constants were 0.0471 mM and 0.0723 ± 0.0388 mM for 1 and 0.0045 mM and 0.0061 ± 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

2.
A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [3H]-leukotriene D4 ([3H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, we have identified specific binding sites for [3H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [3H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37°C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [3H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320±200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5±4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [3H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [3H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung.  相似文献   

3.
Five sesquiterpenoids, 1α,8α-epidioxy-4α-hydroxy- 5αH-guai-7(11),9-dien- 12,8-olide. (1), 8,9-seco-4β-hydroxy-1α,5βH-7(11)-guaen-8,10-olide (2), 8α-hydroxy-1α, 4β,7βH-guai-10(15)-en- 5β,8β-endoxide(3), 7β,8α-dihydroxy-1α,4αH-guai-10(15)-en-5β,8β-endoxide(4) and 7-hydroxy-5(10),6,8-cadinatriene-4-one(5), together with seven known analogs were isolated from the rhizomes of Curcuma wenyujin. Their structures and relative configurations were determined on the basis of spectroscopic methods including 2D NMR techniques, and the structures of 1 and 2 were confirmed by single-crystal X-ray diffraction experiment. Compounds 1–10 and 12 showed significant in vitro antiviral activity against the influenza virus A with IC50 values ranged from 6.80 to 39.97 μM, and SI values ranged from 6.35 to 37.25.  相似文献   

4.
Methyl β-D-glucopyranoside tetraacetates (1) having a trideuterioacetyl group at O-2 (1a), O-3, (1b), O-4 (1c), and O-6 (1d) were synthesized by unambiguous routes to permit assignment of each individual acetoxyl-group signal in the p.m.r. spectrum of 1. The 6-acetoxyl resonance appears at lower field than signals of the other acetoxyl groups in carbon tetrachloride, chloroform-d, and methyl sulfoxide-d6, but in pyridine-d5 and benzene-d6, the 2-acetoxyl-group signal appears at lower field. The acetoxyl resonances of methyl 2,3,4-tri-O-acetyl-6-O-trityl-β-D-glucopyranoside (2), methyl 2,3,4-tri-O-acetyl-β-D-glucopyranoside (3), methyl 2,3-di-O-acetyl-4,6-O-benzylidene-β-D-glucopyranoside (5), methyl 2,3-di-O-acetyl-β-D-glucopyranoside (6), methyl 2,3,6-tri-O-acetyl-β-D-glucopyranoside (7), and methyl 2,3-di-O-acetyl-6-O-trityl-β-D-glucopyranoside (12) were assigned similarly after synthesis of the 2-(trideuterioacetyl) (2a, 3a, 5a, 6a, 7a, and 12a), 3-(trideuterioacetyl) (2b, 3b, 5b, 6b, 7b, and 12b), 4-(trideuterioacetyl) (2c and 3c), and 6-(trideuterioacetyl) (7c) analogues. In chloroform-d and benzene-d6, the 4-acetoxyl resonance appeared at about 0.3 p.p.m. to higher field than the other acetoxyl-group signals of 2. In chloroform-d and methyl sulfoxide-d6, the 3-acetoxyl resonance is observed at highest field in compounds 1, 3, and 5. In all of these instances, the 4-hydroxyl group is substituted by an acetyl or benzylidene group. When no 4-substituent is present (compounds 6, 7, and 12), the 3-acetoxyl group resonates at lower field than the other acetoxyl groups.  相似文献   

5.
Lignocellulose pretreatment produces various toxic inhibitors that affect microbial growth, metabolism, and fermentation. Zymomonas mobilis is an ethanologenic microbe that has been demonstrated to have potential to be used in lignocellulose biorefineries for bioethanol production. Z. mobilis biofilm has previously exhibited high potential to enhance ethanol production by presenting a higher viable cell number and higher metabolic activity than planktonic cells or free cells when exposed to lignocellulosic hydrolysate containing toxic inhibitors. However, there has not yet been a systematic study on the tolerance level of Z. mobilis biofilm compared to planktonic cells against model toxic inhibitors derived from lignocellulosic material. We took the first insight into the concentration of toxic compound (formic acid, acetic acid, furfural, and 5‐HMF) required to reduce the metabolic activity of Z. mobilis biofilm and planktonic cells by 25% (IC25), 50% (IC50), 75% (IC75), and 100% (IC100). Z. mobilis strains ZM4 and TISTR 551 biofilm were two‐ to three fold more resistant to model toxic inhibitors than planktonic cells. Synergetic effects were found in the presence of formic acid, acetic acid, furfural, and 5‐HMF. The IC25 of Z. mobilis ZM4 biofilm and TISTR 551 biofilm were 57 mm formic acid, 155 mm acetic acid, 37.5 mm furfural and 6.4 mm 5‐HMF, and 225 mm formic acid, 291 mm acetic acid, 51 mm furfural and 41 mm 5‐HMF, respectively. There was no significant difference found between proteomic analysis of the stress response to toxic inhibitors of Z. mobilis biofilm and planktonic cells on ZM4. However, TISTR 551 biofilms exhibited two proteins (molecular chaperone DnaK and 50S ribosomal protein L2) that were up‐regulated in the presence of toxic inhibitors. TISTR 551 planktonic cells possessed two types of protein in the group of 30S ribosomal proteins and motility proteins that were up‐regulated.  相似文献   

6.
Electrophoretically homogeneous preparations of cytochrome P-450 LM4 from cholestyramine-treated rabbits catalyzed 7α-hydroxylation of cholesterol, 12α-hydroxylation of 5β-cholestane-3α,7α-diol and 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol. Dithiothreitol, a disulfide reducing agent, specifically stimulated the cholesterol 7α-hydroxylase activity severalfold. The 7α-hydroxylase activity was much more sensitive to the sulfhydryl reagents p-chloromercuribenzoate, N-ethylmaleimide and iodoacetamide than the 12α- and 25-hydroxylase activities. Cholesterol 7α-hydroxylase activity, inactivated by these reagents, could be reactivated by treatment with dithiothreitol. Similar results were obtained with purified cytochrome P-450 from rat liver microsomes.The results indicate that sulfhydryl groups are more important for cholesterol 7α-hydroxylation than for other C27-steroid hydroxylations.  相似文献   

7.
A new cardenolide, 12β,14β-dihydroxy-3β,19-epoxy-3α-methoxy-5α-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12β-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12β-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6′-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16α-hydroxyasclepin (10), 16α-acetoxycalotropin (11), and 16α-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC50 value of 0.02 μM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC50 values of 0.69 and 1.46 μM, respectively.  相似文献   

8.
Abstract: The effects of prostaglandin E2 (PGE2) on 86Rb efflux from rat brain synaptosomes were studied to explore its role in nerve ending potassium (K+) channel modulation. A selective dose-dependent inhibition of the calcium-activated charybdotoxin-sensitive component of efflux was found upon application of PGE2. No significant effect was seen on basal and voltage-dependent components over the concentration range of 10–8 to 10–5M. The protein kinase C (PKC) inhibitors H-7 (10 μM) and staurosporine (100 nM), as well as prolonged preincubation (90 min) with 40-phorbol 12, 13-dibutyrate, which has been reported to down-regulate PKC, abolished the PGE2-in- duced inhibition, whereas HA1004 (10 μM) and Rp-3′,5’cyclic phosphorothioate (100 nM), which are relatively more selective for protein kinase A than PKC, did not. 4β-Phorbol 12, 13-dibutyrate (100 nM), an activator of PKC, produced a similar inhibition of the Ca2+-dependent component of 86Rb efflux but also had no effect on the basal and voltage-dependent components. These data suggest that PGE2 can inhibit rat brain nerve ending calcium-activated 86Rb efflux, and this inhibition may involve PKC activation.  相似文献   

9.
Phytochemical investigation of the aerial parts of Eremostachys moluccelloides Bunge led to the identification of a new diterpene, 2β,14-dihydroxy −11-formyl- 12-carboxy-13-des-isopropyl-13-hydroxymethyl-abieta-8,11,13- triene- 16(17)- lactone (1), along with the known compounds 12, 18-dicarboxy-14-hydroxy-13-des -isopropyl-13-hydroxymethyl- abieta-8,11,13-triene-16(17)-lactone (2), 5-hydroxy-3′,4′,7-trimethoxyflavone (3), 5-hydroxy-4’,7-dimethoxyflavone (4), luteolin-7-O-β-glucoside (5), verbascoside (6), luteolin 7-O-(6″-O-β-D-apiofuranosyl) -β-D-glucopyranoside (7), chlorogenic acid (8), echinacoside (9), apigenin-7-O-β-D-glucoside (10), p-coumaric acid (11), vanillic acid (12), apigenin-7-O-(6″-E-p-coumaroyl)-β-D-glucopyranoside (13), apigenin-7-O-(3″,6″-E-p-dicoumaroyl)-β-glucoside (14), lamalbide (15), 6β-hydroxy-7-epi-loganin (16), phloyoside II (17) The structures were elucidated on the basis of 1D and 2D NMR spectroscopy, UV, MS and by comparison with compounds previously reported in the literature. Compounds 14, 8, 9, 11, 12, 14 have not been reported previously from any species within the genus Eremostachys. Compounds 114, 17 were obtained from this species for the first time. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

10.
The structures of three new gibberellins A30, A48 and A49 and a new kaurenolide, isolated from seeds of Cucurbita pepo L., were elucidated. The structures of GA39, GA48 and GA49 were shown to be ent-3α,12β-dihydroxygibberell-16-ene-7,19,20-trioic acid (1), ent-2α,3α,10,12α-tetrahydroxy-20-norgibberell-16-ene-7,19-dioic acid 19,10-lactone (5) and the epimer at C–12 of GA48 (8), respectively. The kaurenolide was shown to have the structure: ent-6β,7α,12β-trihydroxykaur-16-en-19-oic acid 19,6-lactone (14).  相似文献   

11.
Four new bitter terpenoids, lucidenic acids A (1), B (2), C (3) and ganoderic acid C (5), were isolated from the fruiting bodies of Ganoderma lucidum, together with the known bitter ganoderic acid B (4). On the basis of spectroscopic data and chemical conversion, their structures were determined to be 7β-hydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 7β,12β-dihydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 3β,7β,12β-trihydroxy-4,4,14α-trimethyl-11,15-dioxo-5α-chol-8-en-24-oic acid and 7β-hydroxy-3,11,15,23-tetraoxo-5α-lanost- 8-en-26-oic acid, respectively.  相似文献   

12.
Three artificial triterpenoids, (20R)-20,25-epoxy-dammaran-2-en-6α,12β-diol (1), (20R)-20,25-epoxy-3-methyl-28-nordammaran-2-en-6α,12β-diol (2) and isodehydroprotopanaxatriol (3), were isolated from an acidic hydrolysate of Panax ginseng C.A. Meyer, along with three known triterpenes, (20R)-panaxadiol (4), (20R)-panaxatriol (5) and oleanolic acid (6). Compounds 13 and 6 showed inhibitory activity against HIV-1 protease with IC50 of 10.5, 10.3, 12.3 and 6.3 μM, respectively. The results indicated that acid treatment of Ginseng extract could produce diverse structures with interesting bioactivity.  相似文献   

13.
New carbohydrate-based surfactants consisting of hydrophilic cellobiosyl and hydrophobic glucosyl residues, methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-α-d-glucopyranoside 1 (GβGαMα, G: glucopyranosyl residue, α and β: α-(1→4)- and β-(1→4) glycosidic bonds, M: methyl group), 2 (GβGβMα), 3 (GβGαMβ), 4 (GβGβMβ), 5 (GβGαEα, E: ethyl group), 6 (GβGβEα), 7 (GβGαEβ), 8 (GβGβEβ) and eight α-and β-glycoside mixtures (a mixture of 1 and 2: 1/2 = 62/38 (9), 32/68 (10); a mixture of 3 and 4: 3/4 = 69/31 (11), 32/68 (12); a mixture of 5 and 6: 5/6 = 62/38 (13), 33/67 (14); a mixture of 7 and 8: 7/8 = 59/41 (15), 29/71 (16)) were synthesized via combined methods consisting of acid-catalyzed alcoholysis of cellulose ethers and glycosylation of phenyl thio-cellobioside derivatives. Their surface activities in aqueous solution depended on their chemical structures: α- or β-(1→4) linkage between hydrophilic cellobiosyl and hydrophobic glucosyl blocks, methyl or ethyl groups of hydrophobic glucosyl block, and α- or β-linked ether group at the C-1 of hydrophobic glucosyl block. The mixing effect of α- and β-glycosides on surface activities was also investigated. As a result, ethyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-ethyl-β-d-glucopyranoside 7 (GβGαEβ) had the highest surface activity, and its critical micellar concentration (CMC) and γCMC (surface tension at CMC) values of compound 7 were 0.5 mM (ca. 0.03 wt %) and 34.5 mN/m, respectively. The surface tensions of α- and β-glycoside mixtures except for compounds 9 and 10 were almost equal to those of pure compounds. The syntheses of the mixtures of α- and β-glycosides without purification process are easier than those of pure compounds. Thus, the mixtures should be more practical compounds for industrial use as a surfactant.  相似文献   

14.
Phytochemical investigation of the non-polar extract of Clusia burle-marxii led to the identification of a new steroid (1), along with friedelinol (2), β-sitosterol (3), friedelin (4), stigmast-5-en-3β,7β-diol (5), stigmast-5-en-3β,7α-diol (6), stigmasterol (7), sitostenone (8), betulinic acid (9), butyrospermol (10), euphol (11), betulin aldehyde (12), 2,2-dimethyl-5-hydroxy-7-phenyl-chromane (13), 6-deoxyisojacareubin (14), padiaxanthone (15) and betulonic acid (16). This is the first report of the identification of compounds 5, 6 and 10 in the family, the first report of compounds 14 and 15 in the genus, and the first report of compounds 2, 3, 7, 8, 12, 16 in the species. Chemotaxonomic significance of these compounds is described herein.  相似文献   

15.
Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-d-xylopyranosyl (1→6)-O-β-d-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-d-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-d-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3′-O-β-d-glucopyranoside (7), isopropyl O-β-d-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-d-glucopyranoside (10), isoheptanol 2(S)-O-β-d-apiofuranosyl-(1→6)-O-β-d-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher’s method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60 ± 1.74% to 11.97 ± 3.30%) and antioxidant activities under the tested conditions.  相似文献   

16.
Microbial transformation of the steroidal sapogenin diosgenin (1) by resting cells of the filamentous fungus, Cunninghamella echinulata CGMCC 3.2716 was studied. Four metabolites were isolated and unambiguously characterized as (25R)-spirost-5-ene-3β,7β-diol-11-one (2), (25R)-spirost-5-ene-3β,7β-diol (3), (25R)-spirost-5-ene-3β,7β,11α-triol (4), and (25R)-spirost-5-ene-3β,7β,12β-triol (5), by various spectroscopic methods (1H, 13C NMR, DEPT, 1H–1H COSY, HMBC, HSQC and NOESY). Compound 2 is a new metabolite. The NMR data and full assignment for the known metabolites (25R)-spirost-5-ene-3β,7β-diol (3) and (25R)-spirost-5-ene-3β,7β,11α-triol (4) are described here for the first time. The biotransformation characteristics observed included were C-7β, C-11α and C-12β hydroxylations. Compounds 1–5 exhibited no significant cytotoxic activity to human glioma cell line U87.  相似文献   

17.
It was found that rat brain nerve endings contain a high affinity and Na- dependent transport system for [3H]β-alanine ([3H]β-ala). As determined from Michaelis-Menten plots, the [3H]β-ala Km was 2.8 × 10-5 M and the Vmax was 0.29 nmol/mg protein/5 min. Under similar incubation conditions the [3H]GABA Km was 3.8 x 10-6M and the Vmax was 6.3 nmol/mg protein/5 min. The [3H]β-ala and [3H]GABA transport systems were further characterized by determining the IC50 values for a number of compounds. The compounds tested were GABA, β-ala, l -2,4-diaminobutyric acid. DL-3-hyd-roxy-GABA, β-guanidopropionic acid, strychnine, γ-guanidobutyric acid, imidazole-4-acetic acid, DL-proline, bicuculline, L-serine, glycine, l -α-ala and taurine. DABA, dl -3-hydroxy-GABA, β-guanidopro-pionic acid and γ-guanidobutyric acid were more potent inhibitors of [3H]GABA than [3H]β-ala transport. Strychnine, imidazole-4-acetic acid, proline and glycine were between 2 and 6 times more potent inhibitors of [3H]β-ala than [3H]GABA transport. β-Ala, bicuculline, serine, α-alanine and taurine were all markedly more potent (12–150 times) inhibitors of [3H]β-ala than [3H]GABA transport. IC50 values were also determined for the above compounds for the sodium-dependent and the sodium-independent binding of [3H]GABA to both fresh and frozen brain membranes. In general, the potency of these compounds to inhibit either sodium-independent or sodium-dependent binding was greater in fresh tissue. It was also observed that the neurophysiologically‘glycine-like’amino acids were more potent inhibitors in the presence of NaCl. No significant correlations were found between [3H]GABA binding under any condition and [3H]GABA or [3H]β-ala transport into nerve endings.  相似文献   

18.
The phytochemical study was done on the methanol extract from of the leaves of Symphonia globulifera. This plant has been used in traditional medicine to treat of different ailments such as malaria, diseases of the skin, diabetes, cough, intestinal worms, pre-hepatic jaundice and fever. Chromatographic fractionation and purification of this extract led to the isolation and characterization of twelve compounds (1–12) including pristriol (1), robustaflavone (2), polycarpol (3), 7''-O-methylrobustaflavone (4), amentoflavone (5), stigmasterol glucoside (6), epicatechin (7), apigenin (8), luteolin (9), 1,5-dihydroxyxanthone (10), β-sitosterol 3-β-D-glucopyranoside (11) and a mixture of stigmasterol and β-sitosterol (12). The structures of compounds 1–12 were elucidated on the basis of 1D and 2D NMR, mass spectrometric and the spectroscopic data as well as comparison with the literature. All these compounds were isolated for the first time from Symphonia genus. The NMR spectra and structure elucidation of compound 1 were reported for the first in the literature. The antibacterial and antioxidant activities of three of these compounds were evaluated. The chemophenetic significance of these compounds is also discussed.  相似文献   

19.
Two furanocoumarin derivatives, 3-methoxypsoralen (1) and 3,5-dimethoxypsoralen (2), along with nine known compounds, friedelinol (3), 3-oxo-11β-hydroxyoleanan-12-ene (4), lupeol (5), taraxer-3-one (6), a mixture of β-sitosterone (7a) and stigmast-4,22-dien-3-one (7b), ergosterol (8), 9,19-cyclolanost-3-one-24,25-diol (9), oleanan-12-ene-3,11-dione (10), and β-sitosterol 3-O-β-D-glucopyranoside (11) were isolated from the twigs of Ficus chlamydocarpa. Their structures were established by NMR spectroscopic analyses and HRESIMS. The structure of 1 was further confirmed from its single crystal X-ray diffraction. The crude extract, fractions and some isolated compounds were assessed for their preliminary antibacterial activity and cytotoxicity. One of the fractions (FB-B3) exhibited inhibition against the bacterial strain Pseudomonas agarici and induced a remarkable cytotoxic activity toward the human cervix carcinoma cell line KB-3-1 (IC50 0.166 mg/mL), and compounds 1, 6, and 7 showed moderate antibacterial activity against Bacillus subtilis and Micrococcus luteus.  相似文献   

20.
Human liver microsomes catalyze an efficient 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol. The hydroxylation is involved in a minor, alternative pathway for side-chain degradation in the biosynthesis of cholic acid. The enzyme responsible for the microsomal 25-hydroxylation has been unidentified. In the present study, recombinant expressed human P-450 enzymes have been used to screen for 25-hydroxylase activity towards 5β-cholestane-3α,7α,12α-triol. High activity was found with CYP3A4, but also with CYP3A5 and to a minor extent with CYP2C19 and CYP2B6. Small amounts of 23- and 24-hydroxylated products were also formed by CYP3A4. The Vmax for 25-hydroxylation by CYP3A4 and CYP3A5 was 16 and 4.5 nmol/(nmol×min), respectively. The Km was 6 μM for CYP3A4 and 32 μM for CYP3A5. Cytochrome b5 increased the hydroxylase activities. Human liver microsomes from ten different donors, in which different P-450 marker activities had been determined, were incubated with 5β-cholestane-3α,7α,12α-triol. A strong correlation was observed between formation of 25-hydroxylated 5β-cholestane-3α,7α,12α-triol and CYP3A levels (r2=0.96). No correlation was observed with the levels of CYP2C19. Troleandomycin, a specific inhibitor of CYP3A4 and 3A5, inhibited the 25-hydroxylase activity of pooled human liver microsomes by more than 90% at 50 μM. Tranylcypromine, an inhibitor of CYP2C19, had very little effect on the conversion. From these results, it can be concluded that CYP3A4 is the predominant enzyme responsible for 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol in human liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号