首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT The relative capacity of Na+, K+ and Cl- to stimulate germination of spores of the microsporidian Nosema algerae, a pathogen of mosquitoes, was examined by ion substitution experiments. Sodium at 0.1 M was ineffective to produce the high percentage of germination that typically occurs with 0.1 M NaCl (the normal stimulation solution) if Cl- was substituted with the usually impermeant anions SO42-, HPO42-, or the organic acids oxalate, cacodylate, EGTA, MES and HEPES. However, substantial concentration- and pH-dependent germination was seen with Na2SO4 in the 0.2-0.8 M Na+ range. Similar results were obtained with solutions of K+ accompanied by impermeant anions. In contrast, the chloride salts of usually impermeant cations, like choline and triethanolamine, failed to germinate spores even at 0.8 M unless Na+ or K+ was independently added. The presence of 0.5 M choline chloride in the medium reduced the levels of Na2SO4 required to produce germination down to equivalence with those of Na+ in the normal stimulation solution. Monensin, a Na+ ionophore, facilitated the germination induced by a medium-level stimulus (0.04 M NaCl) in sonicated samples. These findings indicate that N. algerae spores germinate in response to the alkali metal cations, while CI- plays a passive role by diffusing to maintain internal electroneutrality during cation influx. A possible mechanism of cation action in spore germination is suggested on the basis of these results and observations on other systems of intracellular motility.  相似文献   

2.
Membranes of Klebsiella pneumoniae, grown anaerobically on citrate, contain a NADH oxidase activity that is activated specifically by Na+ or Li+ ions and effectively inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Cytochromes b and d were present in the membranes, and the steady state reduction level of cytochrome b increased on NaCl addition. Inverted bacterial membrane vesicles accumulated Na+ ions upon NADH oxidation. Na+ uptake was completely inhibited by monensin and by HQNO and slightly stimulated by carbonylcyanide-p-trifluoromethoxy phenylhydrazone (FCCP), thus indicating the operation of a primary Na+ pump. A Triton extract of the bacterial membranes did not catalyze NADH oxidation by O2, but by ferricyanide or menadione in a Na+-independent manner. The Na+-dependent NADH oxidation by O2 was restored by adding ubiquinone-1 in micromolar concentrations. After inhibition of the terminal oxidase with KCN, ubiquinol was formed from ubiquinone-1 and NADH. The reaction was stimulated about 6-fold by 10 mM NaCl and was severely inhibited by low amounts of HQNO. Superoxide radicals were formed during electron transfer from NADH to ubiquinone-1. These radicals disappeared by adding NaCl, but not with NaCl and HQNO. It is suggested that the superoxide radicals arise from semiquinone radicals which are formed by one electron reduction of quinone in a Na+-independent reaction sequence and then dismutate in a Na+ and HQNO sensitive reaction to quinone and quinol. The mechanism of the respiratory Na+ pump of K. pneumoniae appears to be quite similar to that of Vibrio alginolyticus.  相似文献   

3.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

4.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

5.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

6.
The response of cyanobacteria to a changing osmotic environment includes the accumulation of organic osmolytes such as glucosylglycerol. The activation of the enzymes involved in glucosylglycerol synthesis [glucosylglycerol-phosphate synthase (GGPS) and glucosylglycerol-phosphate phosphatase (GGPP)] in Synechocystis sp. strain PCC 6803 by various salts and salt concentrations was investigated in vitro. GGPS seemed to be the target for salt-mediated regulation of glucosylglycerol synthesis in vitro. GGPS activation was dependent on the concentration of NaCl, and a sigmoidal plot was obtained. Sensitivity to NaCl was markedly enhanced by low Mg+2 concentrations (optimal at 4 mM), but Mg2+ was not absolutely necessary for the Na+ stimulation. As in the case of NaCl, other salts (including MgCl2) stimulated GGPS. The relative order of GGPS activation in the presence of chloride by the cations at constant ionic strength was Li+ > Na+ > K+, Mg2+ Mn2+. No absolute dependence on ionic strength was observed in Mg2+/Na+-exchange experiments. The degree of activation by ions at various concentrations was positively related to the increasing destabilizing properties of the cations according to the Hofmeister rule, where chaotropic cations are most efficient. Cations were responsible for activation since chaotropic anions counteracted the activating effect of cations. Received: 10 August 1998 / Accepted: 11 November 1998  相似文献   

7.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

8.
Summary Osmotic and specific ion effect are the most frequently mentioned mechanisms by which saline substrates reduce plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the drought and/or salt tolerance of the plant under study. We studied the effects of several single salts of Na+ and Ca2+−NaCl, NaNO3, Na2SO4, NaHCO3, Na2CO3, and Ca(NO3)2—on the germination and root and coleoptile growth of two wheat (Triticum aestivum L.) cultivars, TAM W-101 and Sturdy, the former being more drought tolerant than the latter. The concentrations used were: 0, 0.02, 0.04, 0.08, 0.16, and 0.32 mol L−1. Significant two- and three-way interactions were observed between cultivar, kind of salt, and salt concentration for germination, growth of coleoptile and root, and root/coleoptile ratio. Salts differed significantly (P<0.001) in their effect on seed germination, coleoptile and root growth of both cultivars. Germination of TAM W-101 seeds was consistently more tolerant than that of Sturdy to NaCl, CaCl2, Ca(NO3)2, and NaHCO3 salts at concentrations of 0.02, 0.04, 0.08, 0.16 mol L−1. The osmotic potential, at which the germination of wheat seeds was reduced to 50% of that of the control, was different depending on the kind of salt used in the germination medium. NaCl at low concentrations (0.02 and 0.04 mol L−1) stimulated the germination of both wheat cultivars. At concentrations of 0.02 to 0.16 mol L−1, Ca2+ salts (CaCl2 and Ca(NO3)2) were consistently more inhibitory than the respective Na+ salts (NaCl and NaNO3) for germination of Sturdy. This did not consistently hold true for TAM W-101. Among the Na+ salts, NaCl was the least toxic and NaHCO3 and Na2CO3 were the most toxic for seed germination. Root and coleoptile (in both wheat cultivars) differed in their response to salts. This differential response of coleoptile and root to each salt resulted in seedlings with a wide range of root/coleoptile ratios. For example, the root/coleoptile ratio of cultivar TAM W-101 changed from 2.09 (in the control) to 3.77, 3.19, 2.8, 2.44, 1.31, 0.32, and 0.0 when subjected to 0.08 mol L−1 of Na2SO4, NaCl, CaCl2, NaNO3, Ca(NO3)2, NaHCO3, and Na2CO3, respectively. Na2CO3 at 0.08 mol L−1 inhibited root growth to such an extent that germinated wheat seeds contained coleoptile but no roots. The data indicate that, apart from the clear and more toxic effects of NaHCO3 and Na2CO3 and lesser toxic effect of NaCl on germination and seedling growth, any toxicity-ranking of other salts done at a given concentration and for a given tissue growth may not hold true for other salt concentrations, other tissues and/or other cultivars. The more drought-tolerant TAM W-101, when compared to the less drought tolerant Sturdy, showed higher tolerance (at most concentrations) to NaCl, CaCl2, Ca(NO3)2 and NaHCO3 during its seed germination and to Na2SO4 and CaCl2 for its root growth. This supports other reports that some drought-tolerant wheat cultivars are more tolerant to NaCl. In contrast, the coleoptile growth of drought-sensitive Sturdy was noticeably more tolerant to NaNO3, Ca(NO3)2 and NaHCO3 than that of drought-tolerant TAM W-101. Based on the above and the different root/coleoptile ratios observed in the presence of various salts, it is concluded that in these wheat cultivars: a) coleoptile and root tissues are differently sensitive to various salts, and b) at the germination stage, tolerance to certain salts is higher in the more drought-tolerant cultivar.  相似文献   

9.
Hydrogenase is the main catabolic enzyme of hydrogen-utilizing sulfate-reducing bacteria. In haloalkaliphilic sulfate reducers, hydrogenase, particularly if it is periplasmic, functions at high concentrations of Na+ ions and low concentrations of H+ ions. The hydrogenases of the newly isolated sulfate-reducing bacteria Desulfonatronum thiodismutans, D. lacustre, and Desulfonatronovibrio hydrogenovorans exhibit different sensitivity to Na+ ions and remain active at NaCl concentrations between 0 and 4.3 M and NaHCO3 concentrations between 0 and 1.2 M. The hydrogenases of D. lacustre and D. thiodismutans remain active at pH values between 6 and 12. The optimum pH for the hydrogenase of D. thiodismutans is 9.5. The optimum pH for the cytoplasmic and periplasmic hydrogenases of D. lacustre is 10. Thus, the hydrogenases of D. thiodismutans, D. lacustre, and Dv. hydrogenovorans are tolerant to high concentrations of sodium salts and extremely tolerant to high pH values, which makes them unique objects for biochemical studies and biotechnological applications.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 460–465.Original Russian Text Copyright © 2005 by Detkova, Soboleva, Pikuta, Pusheva.  相似文献   

10.
Spores of Onoclea sensibilis L. do not germinate on distilled H2O if they are pretreated for sufficient time with dilute NaClO solution. However, spores will germinate, after NaClO pretreatment, on a simple mineral medium containing the major and trace elements. Complete germination after pretreatment also is obtained on a solution containing only Ca2+ and K+ as the cations, but neither ion by itself is sufficient. Rb+, but not Li+ or Na+, can replace K+. Hypochlorite-treated spores do not require the continuous presence of Ca2+ and K+ to germinate; exposure during the first 4 hr of culture, with the remainder of the time on distilled H2O, is sufficient. Extraction of spores with ethylene glycol bis(aminoethyl ether) tetraacetic acid [EGTA] makes their germination dependent on Ca2+, as reported by other workers, but it does not produce a co-requirement for K+. Colorimetric analysis with arsenazo III confirms that Ca2+ is extracted from Onoclea spores by NaClO. Extractable Ca2+ amounts to about 78 nmol/mg spore dry wt. Of this amount, 31% is contained in the perispore. The perispore comprises 13% of the total spore dry wt.  相似文献   

11.
The accumulation of inorganic and organic osmolytes and their role in osmotic adjustment were investigated in roots and leaves of vetiver grass (Vetiveria zizanioides) seedlings stressed with 100, 200, and 300 mM NaCl for 9 days. The results showed that, although the contents of inorganic (K+, Na+, Ca2+, Mg2+, Cl, NO3, SO42− and H2PO3)) and organic (soluble sugar, organic acids, and free amino acids) osmolytes all increased with NaCl concentration, the contribution of inorganic ions (mainly Na+, K+, and Cl) to osmotic adjustment was higher (71.50–80.56% of total) than that of organic solutes (19.43–28.50%). The contribution of inorganic ions increased and that of organic solutes decreased in roots with the enhanced NaCl concentration, whereas the case in leaves was opposite. On the other hand, the osmotic adjustment was only effective for vetiver grass seedlings under moderate saline stress (less than 200 mM NaCl).  相似文献   

12.
The seawater cations, Na+, K+, Mg2+, and Ca2+, each stimulated MnO2-reductase activity of whole cells and cell extracts of Bacillus 29. Concentrations of Na+ and K+ which stimulated whole cells and cell extracts maximally were equivalent to those in two- to fivefold diluted seawater. Cell-extract activity was strongly stimulated by Ca2+ and Mg2+ up to a concentration of 0.01 M Mg2+ and 0.002 M Ca2+, with little additional stimulation above these concentrations. Whole-cell activity was stimulated biphasically with increasing concentrations of Ca2+ and Mg2+. Comparison of the effects of individual cations or mixtures of them at concentrations equivalent to their concentration in fivefold diluted seawater showed that more activity was obtained with 0.01 M Mg2+ or 0.002 M Ca2+ than with 0.1 M Na+, and more with 0.1 M Na+ than with 0.0022 M K+. Fivefold diluted seawater permitted as much or more activity as solutions of individual or synthetic mixtures of the cations. Pre-exposure experiments showed that the ionic history of whole cells was important to their ultimate activity. The MnO2-reductase activity of induced whole cells exhibited a temperature optimum near 40 C. Cell extracts had different temperature optima (Topt), depending on whether induced glucose-linked activity (Topt = 25 C), uninduced glucose-linked, ferricyanide-dependent activity (Topt = 30 C), or uninduced ferrocyanide-linked activity (Topt = 40 C) were being measured. Some of these optima are higher than previously reported.  相似文献   

13.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

14.
NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响   总被引:2,自引:0,他引:2  
为了阐明栓皮栎种子萌发期对盐碱胁迫的耐受性,研究了不同浓度(0、50、100、200和400 mmol/L)NaCl和Na2CO3胁迫对其种子萌发、生长、保护酶活性和有机渗透调节物质等的影响,结果表明:(1)盐碱胁迫对栓皮栎种子的萌发率和发芽指数均没有显著影响;随着Na+浓度的升高,NaCl和Na2CO3处理下的胚根长度、胚根生长速率、胚根鲜重均受到抑制,呈现下降趋势;活力指数和耐盐指数在NaCl胁迫下表现为较低浓度(50 mmol/L)促进,较高浓度(100,200,400 mmol/L)抑制,而在Na2CO3处理下则不断下降;相对盐害率在两种处理下均表现波动趋势。(2)通过建立活力指数、胚根长度等与Na+浓度的回归方程,发现在NaCl胁迫下栓皮栎种子活力指数、胚根鲜重、胚根长度和胚根生长速率的临界值分别为300.0、300.0、333.6、369.6 mmol/L。(3)在NaCl和Na2CO3胁迫下,随Na+浓度的增加,丙二醛含量增幅显著;NaCl处理下的SOD(superoxide dismutase)活性呈现先升高后降低的趋势,而Na2CO3处理下则均低于对照;POD(peroxidase)活性变化不显著;CAT(catalase)活性均表现为先降低后升高;脯氨酸、可溶性蛋白和可溶性糖含量均随着Na+浓度的升高而呈现不同程度上升趋势。(4)等Na+浓度时,NaCl处理下的各项生长指标均高于Na2CO3处理,丙二醛、保护酶活性及渗透调节物质含量均低于Na2CO3处理,说明Na2CO3对栓皮栎种子的影响比NaCl更为显著。  相似文献   

15.
A suspension‐cultured cell strain of the mangrove plant (Bruguiera sexangula) was established from a callus culture and maintained in an amino acid medium in the absence of NaCl. NaCl non‐adapted cells were transferred to media containing 0–200 mm NaCl. The initial growth rate decreased gradually with increasing salt concentrations. However, at up to 150 mm NaCl, cell number growth at the highest point was almost the same as that at lower salt concentrations. Cells even continued to grow in the presence of 200 mm NaCl. Cells incubated in a medium containing 50 mm NaCl for 3 weeks accumulated Na+, while those incubated in 150 mm NaCl for 2 d showed only a transient increase in Na+ and Cl concentrations. In the latter treatment, the intracellular concentration of Na+ returned to the original low level within 2 weeks. It took a longer time for Cl to return to its original level. As a result, the Na+ and Cl concentrations in cells cultured with 50 mm NaCl were much larger than those in cells cultured with 150 mm NaCl. The intracellular distribution of ions after transfer to the medium containing 150 mm NaCl was analysed by isolating the vacuoles. Treatment with amiloride, an inhibitor of the Na+/H+ antiporter, suppressed the recovery of Na+ to the original level in the cells. Treatment with 150 mm NaCl for 3 d stimulated the activities of both the vanadate‐dependent H+‐ATPase and the Na+/H+ antiporter in the plasma membrane fraction.  相似文献   

16.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

17.
Abstract

A propanol-tolerant neutral protease was purified and characterized from Bacillus sp. ZG20 in this study. This protease was purified to homogeneity with a specific activity of 26,655?U/mg. The recovery rate and purification fold of the protease were 13.7% and 31.5, respectively. The SDS-PAGE results showed that the molecular weight of the protease was about 29?kDa. The optimal temperature and pH of the protease were 45?°C and 7.0, respectively. The protease exhibited a good thermal- and pH stability, and was tolerant to 50% propanol. Mg2+, Zn2+, K+, Na+ and Tween-80 could improve its activity. The calculated Km and Vmax values of the protease towards α-casein were 12.74?mg/mL and 28.57?µg/(min mL), respectively. This study lays a good foundation for the future use of the neutral protease from Bacillus sp. ZG20.  相似文献   

18.
Summary Measurements are described of fusicoccin (FC)-stimulated H+ efflux in barley (Hordeum vulgare L.) roots when K+ and Na+ concentrations were varied. In low-salt roots H+ efflux was stimulated in both 5 mM KCl and NaCl. In salt-saturated roots H+ efflux was stimulated more effectively in KCl than in NaCl solution. The stimulation of H+ efflux thus is parallel with the selectivity of these different root preparations for K+ and Na+ and with estimates of permeability ratios (P Na/P K) determined from electrical measurements. It is suggested that the results support electrogenic coupling between FC-stimulated H+ efflux and cation uptake.  相似文献   

19.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

20.
Summary A new alkalophilic Bacillus GK-8 overproduced three thermostable extracellular pectinases. The temperature optima was 60°C for all the three enzymes which retained full activity for 2 h. They had pH optima 5.4, 7.0 and 10.4 and were designated as PI, PII and PIII respectively. The half life at 80°C of PI, PII and PIII was 18 min., 12 min. and 12 min., respectively. The enzyme activity was stimulated by Mg2+, Ca2+, Zn2+, Co2+ and Mn2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号