首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vitro DNA-directed protein-synthesizing system of Bacillus subtilis was developed using vegetative and sporulating cell extracts. Protease activity was inhibited by the addition of three kinds of protease inhibitors and removed from the extracts by hemoglobin-Sepharose treatment. Endogenous RNA synthesis was very low because of elimination of endogenous DNA by polyethylene glycol 6000 treatment of the supernatant. Protein synthesis was dependent on the DNA template, ribosomes and supernatant. When pUB110 DNA was used as a template, three proteins (Kl, K2 and K5) which have the same molecular weights as those synthesized in vivo were synthesized in vitro with vegetative, T2 (2 hr after the end of logarithmic growth) and T4 cell extracts.  相似文献   

2.
The RsaI fragment (750 base pairs) containing the entire early sporulation gene spo0F of Bacillus subtilis was inserted in the downstream region of the PR promoter of the expression vector, pEBR-151. The recombinant plasmid thus obtained was introduced into Escherichia coli HB101 and the synthesis of the spo0F gene product was induced by a temperature shift up. After induction for 7 hr, a protein of molecular weight 14,000 (14 K protein) was overproduced to about 9% of the total cellular protein. The 14 K protein was purified to 94% purity by four steps of column chromatography. Deletion analysis and the sequence determination of the NH2-terminal amino acid residues of the purified 14 K protein confirmed that the 14 K protein is the spo0F gene product.  相似文献   

3.
The requirement of peptidoglycan synthesis for growth complicates the analysis of interactions between proteins involved in this pathway. In particular, the latter steps that involve membrane-linked substrates have proven largely recalcitrant to in vivo analysis. Here, we have taken advantage of the peptidoglycan synthesis that occurs during sporulation in Bacillus subtilis to examine the interactions between SpoVE, a nonessential, sporulation-specific homolog of the well-conserved and essential SEDS (shape elongation, division, and sporulation) proteins, and SpoVD, a nonessential class B penicillin binding protein. We found that localization of SpoVD is dependent on SpoVE and that SpoVD protects SpoVE from in vivo proteolysis. Co-immunoprecipitations and fluorescence resonance energy transfer experiments indicated that SpoVE and SpoVD interact, and co-affinity purification in Escherichia coli demonstrated that this interaction is direct. Finally, we generated a functional protein consisting of an SpoVE-SpoVD fusion and found that a loss-of-function point mutation in either part of the fusion resulted in loss of function of the entire fusion that was not complemented by a wild-type protein. Thus, SpoVE has a direct and functional interaction with SpoVD, and this conclusion will facilitate understanding the essential function that SpoVE and related SEDS proteins, such as FtsW and RodA, play in bacterial growth and division.  相似文献   

4.
A 1.4-megadalton EcoRI restriction fragment carrying Bacillus subtilis sporulation gene spo0B was cloned from the specialized transducing phage, φ 105spo0B, into a unique EcoRI site of plasmid vector pUB110, and four plasmids having a deletion in the 1.4-megadalton EcoRI fragment were constructed. Analysis of the polypeptides synthesized in B. subtilis minicells harboring these plasmids and the sporulation ability of strain UOT0436 (spo0B136 recE4) harboring these plasmids showed that the spo0B gene product is a polypeptide of 24,000 daltons. Two-dimensional polyacrylamide gel analysis showed that the isoelectric point of this protein is almost neutral.  相似文献   

5.
The gene encoding for B. intermedius glutamyl endopeptidase (gseBi) has previously been cloned and its nucleotide sequence analyzed. In this study, the expression of this gene was explored in protease-deficient strain B. subtilis AJ73 during stationary phase of bacterial growth. We found that catabolite repression usually involved in control of endopeptidase expression during vegetative growth was not efficient at the late stationary phase. Testing of B. intermedius glutamyl endopeptidase gene expression with B. subtilis spo0-mutants revealed slight effect of these mutations on endopeptidase expression. Activity of glutamyl endopeptidase was partly left in B. subtilis ger-mutants. Probably, gseBi expression was not connected with sporulation. This enzyme might be involved in outgrowth of the spore, when germinating endospore converts into the vegetative cell. These data suggest complex regulation of B. intermedius glutamyl endopeptidase gene expression with contribution of several regulatory systems and demonstrate changes in control of enzyme biosynthesis at different stages of growth.  相似文献   

6.
7.
Summary Methylation of a membrane-associated protein with an apparent molecular mass of 40000 daltons has been observed in Bacillus subtilis. The methylation was nutrient dependent and occurred with a doubling time of 4 ± 1 min. In wild-type strains, the half-life of turnover of the methyl group(s) was 17 ± 6 min. Several isogenic strains of B. subtilis containing spo0 mutations (spo0A and spo0H) were found to be normal in glutamate-dependent methylation of the protein and turnover of the methyl group(s). In strains containing spo0B and spo0E mutations, the methyl group(s) were incorporated in response to glutamate addition but turnover was not at a normal rate. The half-life of methyl group turnover was extended to 45 ± 3 min in these strains. In a spo0K mutant and in spoILI and spoIIF mutants, the protein was not significantly methylated. The methylation of a 40000 dalton protein was also found to be dependent on phosphate. This methylation was observed in wild-type and spo0A and spo0H strains with a doubling time of 4 ± 1 min and a half-life of turnover of the methyl group(s) of 11 + 3 min. In strains containing spo0B, spo0E, and spo0F mutations, the phosphate-dependent incorporation of the methyl group(s) was normal (5 ± 1 min) but the turnover half-life was extended to 46 ± 8 min. It is not known whether the nitrogen-dependent and phosphate-dependent systems methylated the same protein. The spo0 mutants are defective in the initial stages of sporulation, and it has been proposed that the spo0 gene products may play a role in nutrient sensing. The discovery of defects in the methylation of the 40 kDa protein in some of these spo0 mutants supports the proposal that the protein methylation may be part of a nutrient sensing system for the control of growth and sporulation in Bacillus species.  相似文献   

8.
We have shown previously that Spo0AP-dependent sinIR operon expression was substantially down-regulated in abrB null mutant backgrounds. In this report, we show that loss of function mutations in abrB also cause phosphorelay gene expression to be down regulated. abrB null mutations caused diminished vegetative growth-associated sporulation and resulted in a significant reduction in sporulation frequencies at T24. These mutants, however, sporulated at wild-type levels at T48, indicating that sporulation timing was affected. The rvtA11 mutation in spo0A, a deletion mutation in spo0E, and a null mutation in hpr (scoC) rescued sporulation and Spo0AP-dependent gene expression in an abrB mutant background. These data indicate that AbrB and Spo0E may comprise a checkpoint system that regulates the progression of sporulation, allowing exploration of alternate cell states prior to the irrevocable commitment to sporulation.  相似文献   

9.
The Bacillus subtilis SpoVE integral membrane protein is essential for the heat resistance of spores, probably because of its involvement in spore peptidoglycan synthesis. We found that an SpoVE-yellow fluorescent protein (YFP) fusion protein becomes localized to the forespore during the earliest stages of engulfment, and this pattern is maintained throughout sporulation. SpoVE belongs to a well-conserved family of proteins that includes the FtsW and RodA proteins of B. subtilis. These proteins are involved in bacterial shape determination, although their function is not known. FtsW is necessary for the formation of the asymmetric septum in sporulation, and we found that an FtsW-YFP fusion localized to this structure prior to the initiation of engulfment in a nonoverlapping pattern with SpoVE-cyan fluorescent protein. Since FtsW and RodA are essential for normal growth, it has not been possible to identify loss-of-function mutations that would greatly facilitate analysis of their function. We took advantage of the fact that SpoVE is not required for growth to obtain point mutations in SpoVE that block the development of spore heat resistance but that allow normal protein expression and targeting to the forespore. These mutant proteins will be invaluable tools for future experiments aimed at elucidating the function of members of the SEDS (“shape, elongation, division, and sporulation”) family of proteins.  相似文献   

10.
The gene queD encoding quercetinase of Streptomyces sp. FLA, a soil isolate related to S. eurythermus T, was identified. Quercetinases catalyze the 2,4-dioxygenolytic cleavage of 3,5,7,3′,4′-pentahydroxyflavone to 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide. The queD gene was expressed in S. lividans and E. coli, and the recombinant hexahistidine-tagged protein (QueDHis6) was purified. Several flavonols were converted by QueDHis6, whereas CO formation from the 2,3-dihydroflavonol taxifolin and the flavone luteolin were not observed. In contrast to bicupin quercetinases from Aspergillus japonicus and Bacillus subtilis, and bicupin pirins showing quercetinase activity, QueD of strain FLA is a monocupin exhibiting 35.9% sequence identity to the C-terminal domain of B. subtilis quercetinase. Its native molecular mass of 63 kDa suggests a multimeric protein. A queD-specific probe hybridized with fragments of genomic DNA of four other quercetin degrading Streptomyces strains, but not with DNA of B. subtilis. Potential ORFs upstream of queD probably code for a serine protease and an endoribonuclease; two ORFs downstream of queD may encode an amidohydrolase and a carboxylesterase. This arrangement suggests that queD is not part of a catabolic gene cluster. Quercetinases might play a major role as detoxifying rather than catabolic enzymes.  相似文献   

11.
Summary The physiological roles of the gene subset defined by early-blocked sporulation mutations (spo0) and their second-site suppressor alleles (rvtA11 and crsA47) remain cryptic for both vegetative and sporulating Bacillus subtilis cells. To test the hypothesis that spo0 gene products affect global regulation, we assayed the levels of carbon- and nitrogen-sensitive enzymes in wild-type and spo0 strains grown in a defined minimal medium containing various carbon and nitrogen sources. All the spo0 mutations (except spo0J) affected both histidase and arabinose isomerase levels in an unexpected way: levels of both carbon-sensitive enzymes were two- to six-fold higher in spo0 strains compared to wild type, when cells were grown on the derepressing carbon sources arabinose or maltose. There was no difference in enzyme levels with glucose-grown cells, nor was there a significant difference in levels of the carbonindependent enzymes glutamine synthetase and glucose-6-phosphate dehydrogenase. This effect was not due to a slower growth rate for the spo0 mutants on the poor carbon and nitrogen sources used. The levels of carbon-sensitive enzymes were not simply correlated with sporulation ability in genetically suppressed spo0 mutants, but the rvtA and crsA suppressors each had such marked effects on wild-type growth and enzyme levels that these results were difficult to interpret. We conclude that directly or indirectly the spo0 mutations, although blocking the sporulation process, increase levels of carbon-sensitive enzymes, possibly at the level of gene expression.  相似文献   

12.
Penicillin at concentrations non-inhibitory to the vegetative growth was found to inhibit sporulation inBacillus polymyxa 2459. The effect of penicillin was shown to be at the level of spore-specific mucopeptide synthesis. Penicillin had no effect on the early events such as DNA and protein synthesis in sporogenesis The sensitive period of inhibition was between T0 to T2 hours of sporulation.  相似文献   

13.
The dye methylene blue was found to inhibit sporulation inBacillus subtilis 168. The compound blocked spore formation at concentrations subinhibitory to vegetative growth while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to the inhibitor through T6, but germination and outgrowth were not affected by the presence of the compound. The inhibition of sporulation may be related to the ability of the compound to inhibit oxidative phosphorylation.  相似文献   

14.
We developed a novel surface display system based on the CotB anchoring motif in order to express foreign protein on the surface of vegetative Bacillus subtilis cells. CotB is a protein in the B. subtilis spore coat. In this system, three repeats of the immunodominant ovalbumin T-cell epitope (OVA323–339) were linked with the cholera toxin B subunit (CTB) to construct a fusion protein, CTB-OVA epi, which was then fused to the C-terminal of the CotB protein so that CTB-OVA epi was expressed in vegetatively-growing B. subtilis. The expression and localization of the CTB-OVA epi protein was confirmed by western blotting, immunofluorescence microscopy, and flow cytometry. The results indicated that a CotB-based surface display system was successfully used to express the CTB-OVA epi protein on the surface of vegetative B. subtilis cells.  相似文献   

15.
16.
A key event of the sporulation process in Bacillus subtilis is the asymmetric cell division that divides the developing cell into two unequal compartments. To examine the function of vegetative cell division genes in this developmental division, we isolated and characterized the B. subtilis counterpart to the Escherichia coli minicell operon minB, which governs correct placement of the division septum. Starting from the closely linked spo/VFlocus, we used walking methods to isolate the region of the B. subtilis chromosome proximate to the divlVB minicell locus. DNA sequence analysis found two open reading frames whose predicted products had significant identity to the E. coli MinC cell division inhibitor and the MinD ATPase activator of MinC, and disruption of minCD function generated a minicell phenotype in B. subtilis. Notably, no homologue to the E. coli MinE topological specificity element was found in the B. subtilis minCD region. The B. subtilis min genes were part of an operon transcribed from a major promoter more than 2.5 kb upstream from minC. An internal promoter immediately upstream from minC was dependent on RNA polymerase containing sigma-H and was active at the onset of sporulation. However, neither minCnor minD function was absolutely required for sporulation and, by implication, for asymmetric septum formation.  相似文献   

17.
Summary We have constructedspo0A-lacZ andspo0F-lacZ fusions with a temperate phage vector and have investigated howspo0 gene products are involved in the expression of each of these genes. The expression ofspo0A-lacZ andspo0F-lacZ was stimulated at about the time of cessation of vegetative growth in Spo+ cells. This stimulation ofspo0A-lacZ was impaired by mutations in thespo0B, D, E, F orH genes but was not affected by mutations in thespo0J orK genes. Similar results were obtained with thespo0F-lacZ fusion. The effect of thespo0A mutation onspo0A-lacZ expression was characteristic: thespo0A-directed β-galactosidase activity found during vegetative growth was significantly enhanced in thespo0A mutant. This result suggests thatspo0A gene expression is autoregulated being repressed by its own gene product. Another remarkable observation was the effect of thesof-1 mutation, which is known to be aspo0A allele; it suppressed the sporulation deficiency ofspo0B, spo0D andspo0F mutants. Thespo0A-lacZ stimulation, which is impaired by any one of thesespo0 mutations, was restored by the additionalsof-1 mutation.  相似文献   

18.
On the basis of their sedimentation properties, the ribosomal particles in crude extracts of Bacillus subtilis W168 are characterized as pressure-sensitive couples, pressure-resistant couples, or non-associating subunits. Pressure-sensitive couples dissociate into subunits, yielding a peak at 60 S in the gradient profile, on sedimentation at high speed in the presence of 10 to 15 mm-Mg2+. Under the same conditions, pressure-resistant couples sediment at 70 S. Under certain conditions, pressure-resistant couples apparently aggregate, possibly in 70 S · 70 S dimers. Procedures are described for the isolation of pressure-sensitive couples from B. subtilis. The isolated couples are shown by chemical fixation experiments to require approximately twice the Mg2+ concentration required by Escherichia coli couples to remain associated at atmospheric pressure.All three types of B. subtilis ribosome incorporate amino acids into acid-insoluble material in the presence of B. subtilis cellular RNA, B. subtilis ribosomal salt wash fraction, and E. coli post-ribosomal supernatant. Overall incorporation, dependence on added RNA, and dependence on salt wash fraction are greatest with pressure-sensitive couples. The products of protein synthesis in vitro stimulated by total B. subtilis RNA appear to be a low molecular weight subset of the proteins synthesized most abundantly in vivo. Incubation of pressure-sensitive couples with cellular RNA from B. subtilis, fMet-tRNAfMet, ribosomal salt wash fraction and GTP results in their conversion to pressure-resistant couples, with concomitant and stoichiometric binding of fMet-tRNA to the 70 S species. It is concluded that in B. subtilis as in E. coli, pressure-sensitive couples are “vacant”, while pressure-resistant couples are “complexed” with messenger RNA. fMet-tRNA-bearing complexed couples are interpreted as initiation complexes in which ribosomes have bound mRNA, presumably at initiation sites. Their formation in vitro is strictly dependent on RNA, salt wash fraction and fMet-tRNA when vacant ribosomal couples are used.  相似文献   

19.
clpC ofBacillus subtilis is part of an operon containing six genes. Northern blot analysis suggested that all genes are co-transcribed and encode stress-inducible proteins. Two promoters (PA and PB) were mapped upstream of the first gene. PA resembles promoters recognized by the vegetative RNA polymerase EσA. The other promoter (PB) was shown to be dependent on σB, the general stress σ factor in B. subtilis, suggesting that clpC, a potential chaperone, is expressed in a σB-dependent manner. This is the first evidence that σB in B, subtilis is involved in controlling the expression of a gene whose counterpart, clpB, is subject to regulation by σ32 in Escherichia coli, indicating a new function of σB-dependent general stress proteins. PB deviated from the consensus sequence of σB promoters and was only slightly induced by starvation conditions. Nevertheless, strong induction by heat, ethanol, and salt stress occurred at the σB-dependent promoter, whereas the vegetative promoter was only weakly induced under these conditions. However, in a sigB mutant, the σA-like promoter became inducible by heat and ethanol stress, completely compensating for sigB deficiency. Only the downstream σA-like promoter was induced by certain stress conditions such as hydrogen peroxide or puromycin. These results suggest that novel stress-induction mechanisms are acting at a vegetative promoter. Involvement of additional elements in this mode of induction are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号