首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1. It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3, Dap7, cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1, the expression of Ltp2, the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.  相似文献   

2.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   

3.
Dap (Defective aleurone pigmentation) is the designation for mutations in maize that give rise to a characteristic dappled endosperm phenotype, consisting of patches of purple tissue, of variable size and shape, on a yellow background. Features shared by all Dap mutants are: dominant expression when they are maternally derived, lack of expression or transmission when they originate from pollen, failure to recover homozygous Dap genotypes, reduced frequency of Dap seeds in the progeny of outcrosses of Dap/+ females, association of the dappled phenotype with reduction in seed size. The mutants so far tested, six in all, can be grouped into two classes, one including male-transmissible (MT) isolates not expressed in the endosperm if their contribution is paternal, and a second class of isolates (NMT) that are permanently lost following paternal transmission. We suggest that the NMT mutations are on a chromosome that carries an intercalary deletion. Assuming linkage between the mutant and the deletion, selection against the deficient chromosome during male gametogenesis would account for the failure to recover Dap seeds in the progeny of Dap/+ male parents. We have obtained genetic evidence supporting this hypothesis. This interpretation, however, does not apply to MT alleles. For these, other mechanisms, such as imprinting and/or dosage effects may be proposed. The mutable pattern in the endosperm to which all Dap mutants give rise is an intriguing phenotype which remains to be clarified. An unexpected finding is that aleuronic and subaleuronic cells corresponding to the colourless areas are abnormal in shape and anthocyanin biosynthesis is blocked in these cells. This finding calls for further investigation in light of a possible connection between flavonoid precursors and cell shape. Received: 2 January 1997 / Accepted: 26 May 1997  相似文献   

4.
The role of putative Na+/H+ antiporters encoded by nhaS1 (slr1727), nhaS3 (sll0689), nhaS4 (slr1595), and nhaS5 (slr0415) in salt stress response and internal pH regulation of the cyanobacterium Synechocystis PCC 6803 was investigated. For this purpose the mutants (single, double, and triple) impaired in genes coding for Na+/H+ antiporters were constructed using the method of interposon mutagenesis. PCR analyses of DNA demonstrated that mutations in nhaS1, nhaS4, and nhaS5 genes were segregated completely and the mutants contained only inactivated copies of the corresponding genes. Na+/H+ antiporter encoded by nhaS3 was essential for viability of Synechocystis since no completely segregated mutants were obtained. The steady-state intracellular sodium concentration and Na+/H+ antiporter activities were found to be the same in the wild type and all mutants. No differences were found in the growth rates of wild type and mutants during their cultivation in liquid media supplemented with 0.68 M or 0.85 M NaCl as well as in media buffered at pH 7.0, 8.0, or 9.0. The expression of genes coding for Na+/H+ antiporters was studied. No induction of any Na+/H+ antiporter encoding gene expression was found in wild type or single mutant cells grown under high salt or at different pH values. Nevertheless, in cells of double and triple mutants adapted to high salt or alkaline pH some of the remaining Na+/H+ antiporter encoding genes showed induction. These results might indicate that some of Na+/H+ antiporters can functionally replace each other under stress conditions in Synechocystis cells lacking the activity of more than one antiporter.  相似文献   

5.
The resistance system of Mycobacterium bovis (B.C.G.) to aminoglycoside-and peptide-antibiotics has been studied. The phenotype of mutants isolated from the parent B.C.G. strain by a single-step selection with an antibiotic were classified into the following three types: (1) resistant only to a low concentration (200 μg/ml) of kanamycin in Ogawa egg medium (k1R); (2) resistant to a low concentration (200 μg/ml) of viomycin and of capreomycin (2R); and (3) resistant to a high concentration (1,000 μg/ml or more) of kanamycin and low concentrations (100 to 200 μg/ml) of lividomycin and of paromomycin (KR). The mutants showing these phenotypes, k1R, 2R, and KR, were isolated from the parent strain by inoculating the strain into media containing 100 μg/ml of kanamycin, and 100 μ/g/ml of viomycin or capreomycin, and 1,000 μg/ml of kanamycin, respectively, at rates of 10?5-10?6, 10?5-10?6, and 10?6-10?7, respectively, in a total viable population of the parent strain. Unlike in the case of M. tuberculosis, no mutant could be isolated from the parent strain by use of enviomycin, lividomycin, and/or paromomycin. In contrast to the fact that quadruply resistant mutants were isolated directly from the parent H37Rv strain of M. tuberculosis, such mutants could be isolated only by two-step selections. Furthermore, the phenotypes of the quadruply resistant mutants were those showing a higher resistance or a broader spectrum than expected by the addition of phenotypes of individual mutations. In addition, it was shown that, in contrast to the fact that hextuply resistant mutants could be isolated directly from the parent strain of M. tuberculosis, such mutants were not isolated directly from the parent B.C.G. strain, but could be isolated only after pre-incubation of the strain on a medium containing Tween 80.  相似文献   

6.
Summary We have isolated Saccharomyces cerevisiae mutants, smp, showing stable maintenance of plasmid pSRI, a Zygosaccharomyces rouxii plasmid. The smp mutants were recessive and were classified into at least three different complementation groups. The three mutants also showed increased stability of YRp plasmids and the mutations are additive for plasmid stability. One mutation, smp1, confers a respiration-deficient (rho 0) phenotype and several Rho mutants independently isolated by ethidium bromide treatment of the same yeast strain also showed increased stabilities of pSR1 and YRp plasmids. The wild-type S. cerevisiae cells showed a strongly biased distribution of pSR1 molecules as well as YRp plasmids to the mother cells at mitosis, while the smpf mutant did not show this bias. Another mutation, smp3, at a locus linked to ade2 on chromosome XV, confers temperature-sensitive growth. The SMP3 gene encodes a 59.9 kDa hydrophobic protein and disruption of the gene is lethal.  相似文献   

7.
2,3-Diaminopropionic acid (Dap) and N-terminal Dap peptides have been found to inhibit in vitro protein-modifications by methylglyoxal (MG), one of the highly reactive α-dicarbonyl compounds. MG scavenging potency of the newly synthesized N-terminal Dap peptides is demonstrated by RP-HPLC, SDS–PAGE and non-denaturing PAGE analysis, assays for enzymatic activity and cell viability study and was compared with that of known AGE inhibitors, such as aminoguanidine, pyridoxamine, metformin and carnosine. Two addition products of MG and l-Dap-l-Leu are separated by HPLC and their chemical structures are characterized by 1H and 13C NMR spectroscopy to indicate that both of them are pyrazines derived from 2 molecules of MG and 1 molecule of l-Dap-l-Leu. Mutagenic activities of l-Dap-l-Leu and l-Dap-l-Val and their metabolites according to the Ames assay are found to be negative.  相似文献   

8.
 New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp + genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression. Received: 15 April 1996/Accepted: 9 July 1996  相似文献   

9.
Unchecked amino acid accumulation in living cells has the potential to cause stress by disrupting normal metabolic processes. Thus, many organisms have evolved degradation strategies that prevent endogenous accumulation of amino acids. L‐2,3‐diaminopropionate (Dap) is a non‐protein amino acid produced in nature where it serves as a precursor to siderophores, neurotoxins and antibiotics. Dap accumulation in Salmonella enterica was previously shown to inhibit growth by unknown mechanisms. The production of diaminopropionate ammonia‐lyase (DpaL) alleviated Dap toxicity in S. enterica by catalyzing the degradation of Dap to pyruvate and ammonia. Here, we demonstrate that Dap accumulation in S. enterica elicits a proline requirement for growth and specifically inhibits coenzyme A and isoleucine biosynthesis. Additionally, we establish that the DpaL‐dependent degradation of Dap to pyruvate proceeds through an unbound 2‐aminoacrylate (2AA) intermediate, thus contributing to 2AA stress inside the cell. The reactive intermediate deaminase, RidA, is shown to prevent 2AA damage caused by DpaL‐dependent Dap degradation by enhancing the rate of 2AA hydrolysis. The results presented herein inform our understanding of the effects Dap has on metabolism in S. enterica, and likely other organisms, and highlight the critical role played by RidA in preventing 2AA stress stemming from Dap detoxification.  相似文献   

10.
Rice leaf slices stimulated with blast fungus hyphal component reduced nitroblue tetrazolium in a damped oscillatory profile with relaxing half wavelength in a medium containing glucose, when the respective rate of reduction was plotted against the function of time after the application of blast fungus hyphal component. In the presence of 110μm FAD and glucose, the wave number of the reduction profile increased 4- to 5-fold when compared to that in the absence of exogenous FAD. Exogenous FAD in the increasing concentration of 70 to 110 μm, which was added in the presence of glucose, gave a positive heterotropic-like response upon the reduction of nitroblue tetrazolium with rice leaf slices which were press-injured and stimulated. Exogenous pyrroloquinoline quinone in the increasing concentration of 10?3 to 10?1 μm, which was added in the presence of glucose, gave an inhibition upon the reduction. From sediment of the homogenate of stimulated rice leaf slices, the nitroblue tetrazolium reducing redox-enzyme system was solubilized by Triton X-100 and was electrophoretically isolated in a sharp blue band on a polyacrylamide slab gel containing Triton X-100, when the electrophoresed gel was stained by nitroblue tetrazolium or Coomassie brilliant blue. In the solubilized solution, the presence of b-type cytochrome was observed by the oxidation-reduction difference spectrum.  相似文献   

11.
Amount of peptidoglycan in cell walls of gram-negative bacteria.   总被引:10,自引:7,他引:3       下载免费PDF全文
The amount of diaminopimelic acid (Dap) in the cell wall of Escherichia coli was measured in two ways. A radiochemical method first described by us in 1985 (F. B. Wientjes, E. Pas, P. E. M. Taschner, and C. L. Woldringh, J. Bacteriol. 164:331-337, 1985) is based on the steady-state incorporation of [3H]Dap during several generations. Knowing the cell concentration and the specific activity of the [3H]Dap, one can calculate the number of Dap molecules per sacculus. The second method measures the Dap content chemically in sacculi isolated from a known number of cells. With both methods, a value of 3.5 x 10(6) Dap molecules per sacculus was obtained. Combined with electron microscopic measurements of the surface area of the cells, the data indicate an average surface area per disaccharide unit of ca. 2.5 nm2. This finding suggests that the peptidoglycan is basically a monolayered structure.  相似文献   

12.
Tunicamycin resistant mutants (TMR) were isolated and characterized from Chinese hamster ovary cells. One feature of this TMR mutants was a marked decrease in incorporation of radioactive glucosamine, both into membrane glycoproteins and G protein of vesicular stomatitis virus.

The cellular uptake and incorporation into acid insoluble materials of various radioactive substances, including glucosamine, galactosamine, mannose, 2-deoxyglucose and leucine, was examined for the purpose of determination whether the reduced incorporation of radioactive glucosamine into glycoproteins was due to a defect in the glycosylation step or decreased uptake of glucosamine by cells.

While incorporation of glucosamine and 2-deoxyglucose into acid insoluble fractions was reduced strikingly in the mutants, the incorporation of mannose and leucine were the same as in the parent cells.

The uptake of glucosamine in TMR cells was lower than that in the wild type cells, and the Km value for glucosamine uptake differed between the mutants and wild type cells. There was no obvious difference in the uptake of 2-deoxyglucose and mannose.  相似文献   

13.
14.
CloDF13 copy mutants that have their resolution site (crl) deleted accumulate as multimeric plasmid molecules in their host cells and are lost from severalEscherichia coli stains within 60 generations. Here we demonstrate that CloDF13cop3crl mutants are stably maintained in theE.coli strain G668, although the plasmid copy number is not affected. Furthermore, we show that the stable maintenance of those plasmids is achieved even in the presence of multimeric molecules. Therefore, we conclude that a complete monomerization of multimeric molecules appears not to be a prerequisite for accurate partition of the plasmid molecules over daughter cells. The G668 strain may be applied as host for the stabilization of resolution-negative, unstable CloDF13 or related replicons.  相似文献   

15.
As part of a strategy to determine the precise role of pea (Pisum sativum) lectin, Psl, in nodulation of pea by Rhizobium leguminosarum, mutations were introduced into the genetic determinant for pea lectin by site-directed mutagenesis using PCR. Introduction of a specific mutation, N125D, into a central area of the sugar-binding site resulted in complete loss of binding of Psl to dextran as well as of mannose/glucose-sensitive haemagglutination activity. As a control, substitution of an adjacent residue, A126V, did not have any detectable influence on sugar-binding activity. Both mutants appeared to represent normal Psl dimers with a molecular mass of about 55 kDa, in which binding of Ca2+ and Mn2+ ions was not affected. These results demonstrate that the NHD2 group of Asn125 is essential in sugar binding by Psl. To our knowledge, Psl N125D is the first mutant legume lectin which is unable to bind sugar residues. This mutant could be useful in the identification of the potential role of the lectin in the recognition of homologous symbionts.  相似文献   

16.
Aims: The aim of this work was to analyse the antimicrobial properties of a purified lectin from Eugenia uniflora L. seeds. Methods and Results: The E. uniflora lectin (EuniSL) was isolated from the seed extract and purified by ion‐exchange chromatography in DEAE‐Sephadex with a purification factor of 11·68. The purified lectin showed a single band on denaturing electrophoresis, with a molecular mass of 67 kDa. EuniSL agglutinated rabbit and human erythrocytes with a higher specificity for rabbit erythrocytes. The haemagglutination was not inhibited by the tested carbohydrates but glycoproteins exerted a strong inhibitory action. The lectin proved to be thermo resistant with the highest stability at pH 6·5 and divalent ions did not affect its activity. EuniSL demonstrated a remarkable nonselective antibacterial activity. EuniSL strongly inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella sp. with a minimum inhibitory concentration (MIC) of 1·5 μg ml?1, and moderately inhibited the growth of Bacillus subtilis, Streptococcus sp. and Escherichia coli with a MIC of 16·5 μg ml?1. Conclusions: EuniSL was found to be effective against bacteria. Significance and Impact of the Study: The strong antibacterial activity of the studied lectin indicates a high potential for clinical microbiology and therapeutic applications.  相似文献   

17.
Summary The fluorinated pyrimidines 5-fluorouracil (5FU) and 5-fluorocytosine (5FC) induce the cytoplasmic petite mutation in the yeastSaccharomyces cerevisiae with high efficiency. It was found that in order to induce the mutation, 5FC must first be deaminated to 5FU. However, mutagenesis does not depend on the further conversion of 5FU to its deoxyriboside (5FUDR) and subsequent blockade of intracellular thymidine synthesis, since 5FUDR itself was found not to be mutagenic, and 5FU-induced mutagenesis was not antagonised by supplying thymidine monophosphate (dTMP) to a dTMP permeable strain. In any case, observations of the molecular changes accompanying petite induction in log phase cells ruled out the possibility that mutagenesis resulted simply from the dilution out of replication-blocked mitDNA molecules, since the appearance of mutants coincided with the synthesis of altered mitDNA molecules. In different strains, the resulting defective molecules were either maintained, giving rise to suppressive petites, or completely degraded, to give pure clones of neutral 0 mutants. It is suggested that this degradative process was a consequence of the incorporation of 5FU into RNA.  相似文献   

18.
Lectins are powerful stimulants of quiescent peripheral blood lymphocytes. They can induce blast transformation leading to mitosis of these cells in vitro. We report here the dose-dependent proliferative curve for human peripheral blood monouclear cells (PBMC) stimulated by the lectin amansin, from Amansia multifida. Amansin stimulated proliferation of (PBMC) at relatively low concentrations (3.12 to 12.5 μg mL-1). We observed also a gradual reduction in mitogenic capacity with progressive increase in the lectin concentration above 12.5 μg mL-1. This decrease in the mitogenic potential did not result from a toxic effect on the cells, and was predominant at a lectin concentration above 50 μg mL-1. This decrease in lymphocyte proliferation could be blocked by avidin and could not be overcome by IL-2 or another lectin (Con Br) at stimulatory concentrations. Additionally, we observed that cells incubated at stimulatory concentrations of amansin produced IFN-γ. Analysis of the culture supernatants established a direct correlation between the IFN-γ and the mitogenic and anti-mitogenic capacity of amansin. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
1. The extent of racemization and the coupling yield in peptide synthesis were studied under high dilution conditions. The azide method yielded the best results. 2. Five linear penta-peptide precursors related to gramicidin S were subjected to cyclization in order to study how the difference in the sequence influences the yield and the ratio of cyclic dimer to monomer. The azide with the sequence of -L -Pro-L -Val-L -Orn(Z)-L -Leu-D -Phe- afforded diZ-gramicidin S in a high yield of 63%. 3. Alternaria mali toxin III, a cyclotetradepsipeptide phytotoxin, was synthesized. The activated linear tetradepsipeptide containing a D -Dap(Z) (N3-Z-D -2,3-diaminopropionic acid) residue at the N-terminus afforded the cyclic precursor (53%). The Dap residue in the precursor was converted into a ΔAla residue by Hofmann degradation to give the desired product.  相似文献   

20.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号