首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

2.
An extracellular pectinase (PEC-I) was isolated from the crude extract of Aspergillus oryzae when grown on passion fruit peel (PFP) as the carbon source and partially purified by ultra filtration, gel filtration and ion-exchange chromatography procedures. Pectinase activity was predominantly found in the retentate. The pectinase from retentate (PEC-Ret) was most active at 50?°C and pH 7.0 and stable at 50?°C with a half-life of approximately 8?h. PEC-I showed higher activity at pH 4.5 and 55?°C, 70?°C and 75?°C and was inhibited by cations (Ag+, Fe2+, Fe3+, Co2+, Ca2+ and Hg2+), EDTA, tannic acid and vanillin. On the other hand, PEC-I was activated by Cu2+, ferulic acid, cinnamic acid and 4-hydroxybenzoic acid. The gel under denaturing conditions of PEC-Ret and PEC-I samples showed a protein band of ~45?kDa coincident with that found by staining for pectinase activity. In the bioscouring of cotton fabric the PEC-Ret pectinase preparation led to a better wettability and removed more pectin from the cotton fibers than the commercial enzyme preparation Viscozyme L, but was less effective than a commercial alkaline pectate lyase preparation and alkaline scouring. The incubation of PEC-Ret with guava juice resulted in a 4.15% decrease in juice viscosity.  相似文献   

3.
A levanase from Bacillus sp. was purified to a homogeneous state. The enzyme had a molecular weight of 135,000 and an isoelectric point of pH 4.7. The enzyme was most active at pH 6.0 and 40°C, stable from pH 6.0 to 10.0 for 20 hr of incubation at 4°C and up to 30°C for 30 min of incubation at pH 6.0. The enzyme activity was inhibited by Ag +, Hg2 +, Cu2 +, Fe3 +, Pb2+, and p-chloromercuribenzoic acid. The enzyme hydrolyzed levan and phlein endowise to produce levanheptaose as a main product. The limit of hydrolysis of levan and phlein were 71% and 96%, respectively.  相似文献   

4.
An extracellular phospholipase D from Actinomadura sp. Strain No. 362 was purified about 430-fold from the culture filtrate. The purified enzyme preparation was judged to be homogeneous on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point of the enzyme were estimated to be about 50,000—60,000 and 6.4, respectively. The enzyme was most active at pH 5.5 and 50°C in the presence of Triton X-100, but showed the highest activity at pH 7.0 and 60 — 70°C in its absence. The enzyme was stable up to 30°C at pH 7.2 and also stable in the pH range of 4.0 to 8.0 on 2 hr incubation at 25°C. With regard to substrate specificity, this enzyme hydrolysed lecithin best among the phospholipids tested. It was activated by Fe3 +, Al3+, Mn2 +, Ca2 +, diethyl ether, sodium deoxycholate and Triton X-100, but was inhibited by cetyl pyridinium chloride and dodecylsulfate.  相似文献   

5.
The thermophilic strain able to degrade gellan was isolated from Bulgarian hot spring. According to its morphological and biochemical properties and by partial sequencing of its 16S rDNA, it was classified as Geobacillus stearothermophilus. It grew in a synthetic medium with gellan as the only carbon source with a specific growth rate of 0.69 h−1 and generation time of 60 min. The strain produced thermostable gellan lyase extracellularly during exponential phase. Its synthesis was inducible; the enzyme was not registered in culture liquid without gellan. The enzyme activity was increased tenfold in conditions of continuous cultivation compared to data from batch fermentations and enzyme productivity was almost sixfold higher. The enzyme showed optimal activity at 75°C in a very large pH area 4–8.5. This enzyme is the first reported thermostable gellan lyase, its residual activity was 100% after 24 h incubation at 60°C and its half-life was 60 min at 70°C.  相似文献   

6.
Out of some 750 strains of microorganisms, a potent bacterium for lipase production was isolated from soil and was identified as Chromobacterium viscosum.

The bacterium accumulates lipase in culture fluid when grown aerobically at 26°C for 3 days in a medium composed of soluble starch, soy bean meal, lard and inorganic salts.

Chromobacterium lipase had an optimum pH of 7.0 for activity at 37°C, and an optimal temperature of 65°C at pH 7.0. The enzyme retained 80% of the activity when heated for 10 min at 70°C. This lipase was capable of hydrolyzing a variety of natural fats and oils, and it was more active on lard and butter than on olive oil. The activity was stimulated by Ca2+, Mg2+, Mn2+ and inhibited by Cu2+, Hg2+ and Sn2+. It was not diminished but rather stimulated by a high concentration of bile-salts.  相似文献   

7.
Liu Y  Chen G  Wang J  Hao Y  Li M  Li Y  Hu B  Lu F 《Biotechnology letters》2012,34(1):109-115
The gene encoding a novel alkaline pectate lyase (Apel) from Bacillus subtilis was cloned and expressed in B. subtilis WB600. Apel contained an ORF of 1,260 bp, encoding a signal peptide of 21 amino acids and a mature protein of 399 amino acids with a calculated molecular mass of 45497.9 Da. The mature Apel was structurally related to the enzymes in the polysaccharide lyase family 1. After purification, the recombinant Apel had a specific activity of 445 U mg−1. The enzyme was optimally active at 50°C and pH 9.  相似文献   

8.
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60–65°C. The apparent K m with citrus pectin was 1.46 mg/ml and the V max was 2433.3 μmol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50°C for 1 h and showed a half-life of 10 min at 60°C. Polygalacturonase was stable at pH 5.0–5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.  相似文献   

9.
A fungal alkaline protease of Scopulariopsis spp. was purified to homogeneity with a recovery of 32.2% and 138.1 U/mg specific activity on lectin-agarose column. The apparent molecular mass was 15 ± 1 kD by sodium dodecyl sulfate polyacryalamide gel electrophoresis (SDS-PAGE). It was a homogenous monomeric glycoprotein as shown by a single band and confirmed by native PAGE and gelatin zymography. The enzyme was active and stable over pH range 8.0–12.0 with optimum activity at pH 9.0. The maximum activity was recorded at 50°C and remained unaltered at 50°C for 24 hr. The enzyme was stimulated by Co2+ and Mn2+ at 10 mM but was unaffected by Ba2+, Mg2+, Cu2+, Na+, K+, and Fe2+. Ca2+ and Fe3+ moderately reduced the activity (~18%); however, a reduction of about 40% was seen for Zn2+ and Hg2+. The enzyme activity was completely inhibited by 5 mM phenylmethylsulfonyl fluoride (PMSF) and partially by N-bromosuccinimide (NBS) and tocylchloride methylketone (TLCK). The serine, tryptophan, and histidine may therefore be at or near the active site of the enzyme. The protease was more active against gelatin compared to casein, fibrinogen, egg albumin, and bovine serum albumin (BSA). With casein as substrate, Km and Vmax were 4.3 mg/mL and 15.9 U/mL, respectively. An activation was observed with sodium dodecyl sulfate (SDS), Tween-80, and Triton X-100 at 2% (v/v); however, H2O2 and NaClO did not affect the protease activity. Storage stability was better for all the temperatures tested (?20, 4, and 28 ± 2°C) with a retention of more than 85% of initial activity after 40 days. The protease retained more than 50% activity after 24 hr of incubation at 28, 60, and 90°C in the presence (0.7%, w/v) of commercial enzymatic and nonenzymatic detergents. The Super Wheel–enzyme solution was able to completely remove blood staining, differing from the detergent solution alone. The stability at alkaline pH and high temperatures, broad substrate specificity, stability in the presence of surfactants and oxidizing and bleaching agents, and excellent compatibility with detergents clearly suggested the use of the enzyme in detergent formulations.  相似文献   

10.
After 24 h of incubation with only purified pectate lyase isolated from Bacillus pumilus DKS1 (EF467045), the weight loss of the ramie fibre was found to be 25%. To know the catalytic residue of pectate lyase the pel gene encoding a pectate lyase from the strain Bacillus pumilus DKS1 was cloned in E. coli XL1Blue and expressed in E. coli BL21 (DE3) pLysS. The pel gene was sequenced and showed 1032 bp length. After purification using CM-Sepharose the enzyme showed molecular weight of 35 kDa and maximal enzymatic activity was observed at 60°C and a pH range of 8.5–9.0. Both Ca2+ and Mn2+ ions were required for activity on Na-pectate salt substrates, while the enzyme was strongly inhibited by Zn2+ and EDTA. The deduced nucleotide sequence of the DKS1 pectate lyase (EU652988) showed 90% homology to pectate lyases from Bacillus pumilus SAFR-032 (CP000813). The 3D structure as well as the catalytic residues was predicted using EasyPred software and Catalytic Site Atlas (CSA), respectively. Site directed mutagenesis confirmed that arginine is an essential catalytic residue of DKS1 pectate lyase.  相似文献   

11.
Alkaline protease production by a newly isolated Bacillus species from laundry soil was studied for detergent biocompatibility. From its morphological and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus species with similarity to Bacillus species Y (Gen Bank entry: ABO 55095), and close homology with Bacillus cohnii YN-2000 (Gen Bank entry: ABO23412). Partial purification of the enzyme by ammonium sulfate (50–70% saturation) yielded 8-fold purity. Casein zymography and Sodium dodecylsulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) of the partially purified enzyme revealed two isozymes of molecular sizes approximately 66 kDa and 18 kDa, respectively. The enzyme was most active at pH 12 and 50°C. At pH 12 the enzyme was stable for 5 h and retained 60% activity. The enzyme retained 44% activity at 50°C up to 2 h. The protease showed good hydrolysis specificity with different substrates tested. The presence of Mn2+, Co2+ and ethylenediaminetetracetic acid (EDTA) showed profound increase in protease activity. The protease of Bacillus species Y showed excellent stability and compatibility with three locally available detergents (Kite, Tide and Aerial) up to 3 h retaining almost 70–80% activity and 10–20% activity at room temperature (30°C) and 50°C, respectively, indicating the potential role of this enzyme for detergent application.  相似文献   

12.
Some enzymatic properties were examined with the purified alkaline proteinase from Aspergillus candidus. The isoelectric point was determined to be 4.9 by polyacrylamide gel disc electrofocusing. The optimum pH for milk casein was around 11.0 to 11.5 at 30°C. The maximum activity was found at 47°C at pH 7.0 for 10 min. The enzyme was stable between pH 5.0 and 9.0 at 30°C and most stable at pH 6.0 at 50°C. The enzyme activity over 95% remained at 40°C, but was almost completely lost at 60°C for 10 min. Calcium ions protected the enzyme from heat denaturation to some extent. No metal ions examined showed stimulatory effect and Hg2+ ions inhibited the enzyme. The enzyme was also inhibited by potato inhibitor and diisopropylphosphorofluoridate, but not by metal chelating agent or sulfhydryl reagents. A. candidus alkaline proteinase exhibited immunological cross-reacting properties similar to those of alkaline proteinases of A. sojae and A. oryzae.  相似文献   

13.
An open reading frame (ORF) with 963 nucleotides from Paenibacillus campinasensis BL11 was cloned and expressed in Escherichia coli. It encodes a pectate lyase (EC 4.2.2.2) of 35.6 kDa, denominated Pel‐BL11. The recombinant Pel‐BL11 was fused with His‐tag and purified. An optimal activity of 1623 IU mg?1 was exhibited at 50°C, pH 10. Significant activities of Pel‐BL11 are demonstrated between 40 and 70°C and from a pH of 7–11. The observed half‐lives are 103 min at 70°C and 288 min at 40°C. Compared to other published acid and alkaline pectate lyases, Pel‐BL11 demonstrated exceptional thermostability and wider pH adaptability. Temperature effects on the cleavage of the pectate α‐1,4‐glycosidic bond by Pel‐BL11 were examined. Continuous cleavage occurred for the first 3 h at 30 and 50°C. However, at 70°C, the majority of the cleavage occurred during the first 10 min. Weight loss in gampi and paper mulberry fibres after enzyme treatment validate the potential of this treatment in fibre degumming.  相似文献   

14.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatograhies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25, 000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0.

Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37°C for 60 min. The optimum pH was pH 11.5–13.0 at 37°C and the optimum temperature was 70°C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80°C and stability from pH 4–12.5 at 60°C and below 75°C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of Microbiol serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

15.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

16.
Aspergillus sp. CH-Y-1043 synthesizes pectin lyase when grown on citrus pectin at 37° C. Production is favoured by increased esterification degree of the pectin used as carbon source. This enzyme displays higher activity at pH values of 8.5–8.8 and temperatures of 40–45° C. The optimal substrate for the enzyme was highly esterified pectin and no enzymatic activity was registered on polygalacturonic acid. The activity is stimulated by, though not dependent on, divalent cations (Ca2+, Mg2+, Mn2+, Ba2+ and Co2+) and inhibited by Zn2+, and it is not sensitive to the addition of EDTA. The enzyme is very stable when exposed to pH variations: at 4° C it preserves more than 95% of its activity at pHs ranging from 2.0 to 10.0, and at 30° C stability is preserved at pHs ranging from 4.0 to 8.0. At a constant pH of 5.0, the enzyme conserves its stability at temperatures ranging from 4 to 50° C and at pH 8.0 sensitivity to temperature increased. The results on the endo-exo nature of the enzyme suggest that this is an exo-pectin lyase. Correspondence to: G. Aguilar  相似文献   

17.
An extracellular enzyme that produces di-D-fructofuranose 2′,1;2,1′-dianhydride (difructose anhydride I= DFA I) from inulin was purified from the culture broth of Streptomyces sp. MCI-2524. The purification enhanced the specific activity 7-fold with an overall yield of 17%. The purified enzyme, when electrophoresed on a SDS polyacrylamide gel, gave a single band corresponding to a molecular weight of 36 kDa. Gel filtration chromatography gave a single peak that eluted at a position corresponding to 70 kDa. The enzyme was active from pH 3.0 to pH 9.0, and at temperatures up to 65°C. Maximal activity was observed at pH 6.0, at 55°C. The enzyme was inhibited by Cu2+.  相似文献   

18.
An extracellular xylanase from the fermented broth of Bacillus cereus BSA1 was purified and characterized. The enzyme was purified to 3.43 fold through ammonium sulphate precipitation, DEAE cellulose chromatography and followed by gel filtration through Sephadex-G-100 column. The molecular mass of the purified xylanse was about 33 kDa. The enzyme was an endoxylanase as it initially degraded xylan to xylooligomers. The purified enzyme showed optimum activity at 55°C and at pH 7.0 and remained reasonably stable in a wide range of pH (5.0–8.0) and temperature (40–65°C). The K m and V max values were found to be 8.2 mg/ml and 181.8 μmol/(min mg), respectively. The enzyme had no apparent requirement of cofactors, and its activity was strongly inhibited by Cu2+, Hg2+. It was also a salt tolerant enzyme and stable upto 2.5 M of NaCl and retained its 85% activity at 3.0 M. For stability and substrate binding, the enzyme needed hydrophobic interaction that revealed when most surfactants inhibited xylanase activity. Since the enzyme was active over wide range of pH, temperature and remained active in higher salt concentration, it could find potential uses in biobleaching process in paper industries.  相似文献   

19.
Recombinant penicillin acylase from Streptomyces lavendulae was covalently bound to epoxy-activated Sepabeads EC-EP303®. Optimization of the immobilization process led to a homogeneous distribution of the enzyme on the support surface avoiding the attachment of enzyme aggregates, as shown by confocal electron microscopy. The optimal immobilized biocatalyst had a specific enzymatic activity of 26.2IUgwetcarrier?1 in the hydrolysis of penicillin V at pH 8.0 and 40°C. This biocatalyst showed the highest activity at pH 8.5 and 65°C, 1.5 pH units lower and 5°C higher than its soluble counterpart. Substrate specificity of the derivative also showed its ability to efficiently hydrolyze other natural aliphatic penicillins such as penicillins K, F and dihydroF. The immobilized enzyme was highly stable at 40°C and pH 8.0 (t1/2=625 h vs. t1/2=397 h for the soluble enzyme), and it could be recycled for at least 30 consecutive batch reactions without loss of catalytic activity.  相似文献   

20.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号