首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethionine-resistant mutants derived from Corynebacterium glutamicum KY 9276 (Thr?) were found to accumulate l-methionine in culture media. One of the mutants, ER-107-4, which produced 250 μg/ml of l-methionine was subjected to further mutagenesis to obtain better l-methionine producers. l-Methionine production increased stepwise by successive endowing such markers as selenomethionine, 1,2,4-triazole, trifluoromethionine and methionine hydroxamate resistance. Thus, a mutant multi-resistant to ethionine, selenomethionine and methionine hydroxamate, ESLMR-724, produced 2 mg/ml of l-methionine in a medium containing 10% glucose.

Increase of l-methionine production was accompanied by increased levels and reduced repressibility of methionine-forming enzymes. The levels of methionine enzymes in ESLMR-724 increased to 2.5~4.2 fold of those in KY9276, In addition, homoserine-O-trans-acetylase and cystathionine γ-synthase which were strongly repressed by l-methionine in KY 9276 were stimulated by exogenous l-methionine in ESLMR-724. Implications of these results were discussed in relation to the productivity of l-methionine and the regulation of l-methionine biosynthesis.  相似文献   

2.
The accumulation of S-adenosylmethionine in adenine-requiring yeast cells grown in a culture medium containing dl-, l-, or d-methionine was much larger than that in cells grown in a methionine-free medium. The accumulation of S-adenosyl-d-methionine in the cells was significantly lower than that of S-adenosyl-l-methionine. When yeast cells containing a large amount of S-adenosyl-l-methionine were incubated in an adenine-free medium, adenosylmethionine was degraded, but poor and insignificant growth was observed indicating the meager nature of this compound as an adenine source. No degradation of accumulated S-adenosyl-d-methionine was detected. Isotopic experiment revealed that S-adenosyl-l-methionine in the yeast cells turned over at a considerable rate when the medium contained both adenine and l-methionine. Most of the l-methionine assimilated appears to be metabolized via S-adenosyl-l-methionine.  相似文献   

3.
Using a minimal medium containing a methionine analog together with a small amount of S-adenosylmethionine (SAM), many SAM requiring mutants which responded only to SAM and not to methionine, S-adenosylhomocysteine, or homocysteine were efficiently isolated from Corynebacterium glutamicum TLD-140 after mutagenesis. Among them, SAM-14 and SAM-19 selected from selenomethionine resistant mutants were subjected to further investigation. Both mutants were unable to grow in a minimal medium and had no detectable activity of SAM synthetase. Both mutants acquired higher resistance to methionine hydroxamate and ethionine as well as to selenomethionine than TLD-140 and produced l-methionine in a medium.

Homoserine-O-transacetylase in SAM-19 was subject to full repression by the addition of excess SAM to the growth medium and was not repressed under SAM limitation, whereas addition of excess l-methionine under SAM limitation caused a partial repression of the enzyme. SAM synthetase as well as l-methionine biosynthetic enzymes in a methionine auxotroph of C. glutamicum was repressed by the addition of l-methionine to the growth medium.

These results suggest that SAM is implicated in the repression of l-methionine synthesizing enzymes in C. glutamicum.  相似文献   

4.
The chlorinolysis of l-methionine methyl ester hydrochloride with molecular chlorine was carried out under various conditions, resulting in methyl l-2-amino-4,4,4-trichlorobutanoate and methyl l-2-amino-3,4,4,4-tetrachlorobutanoate which were isolated as N-benzoyl and N-carbobenzoxy derivatives. The chlorinolysis of N-acylmethionine ester and methionine sulfoxide ester proceeded also without cleavage of the N-protecting group to give the same products as above. However, the reaction of methionine sulfone derivative with chlorine did not proceed in the same conditions.

It was proved that the resulting polychloroamino acid derivatives are optically pure. The possible chlorinolysis mechanism was also proposed.  相似文献   

5.
A large amount of O-acetyl-l-homoserine (OAH) was found to be produced by trifluo-romethionine-resistant mutants derived from Corynebacterium glutamicum ESLR–146 (Thr?,ethionineR, selenomethionineR) and ETzR–606(Thr?,ethionineR, 1,2,4-triazoleR) by mutational treatment with ethyl methanesulfonate. Some cultural conditions for OAH production were examined with one of the mutants, ESLFR-736, which was derived from ESLR–146. Addition of l-methionine or l-serine decreased OAH production. Optimal level of l-threo- nine, a growth factor in ESLFR–736, for OAH production was about 200 μg/ml, and further addition of excess l-threonine repressed OAH production. Corn steep liquor (CSL) and yeast extract added simultaneously enhanced OAH production to a great extent. Thus, the amount of OAH production reached to a level of 10.5 mg/ml with a medium containing 10% glucose and 0.01 % of both CSL and yeast extract after 2 days incubation.

Cell-free extract of C. glutamicum catalyzed the formation of OAH from acetyl CoA and l-homoserine, while a corresponding reaction with succinyl CoA was hardly detected. These observations indicate that OAH but not O-succinyl-l-homoserine is an intermediate of l-methionine biosynthesis in C. glutamicum.

The regulation of homoserine-O-transacetylase was examined in a methionine requiring mutant of C. glutamicum. The enzyme activity was not inhibited by l-methionine, S-adenosyl-methionine and S-adenosylhomocysteine, separately or in combination. The synthesis of homoserine-O-transacetylase was strongly repressed by l-methionine. The enzyme level in an OAH producer, ESLFR–736, increased to about 2-fold of that in ESLR–146, the parental strain.  相似文献   

6.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

7.
To enhance a methionine level of soy protein the plastein reaction was replaced by a simplified one-step process which had been newly developed as described in the preceding paper. It was found that during the process l-methionine ethyl ester (H · Met · OEt) underwent papain-catalyzed polymerization when the enzymatic incubation was carried out in the absence or inadequacy of soy protein. There was a critical point with regard to the ratio of the concentration of H·Met·OEt·HCl ([M]) and that of the soy protein ([S]). A sufficiently low [M]/[S] prevented H · Met · OEt from forming its polymer, permitting efficient incorporation of methionine into soy protein. A high possibility was suggested that in such a case H·Met·OEt acted as a nucleophile amine to be incorporated in the mode of papain-catalyzed aminolysis of protein.  相似文献   

8.
l-Threonine producing α-amino-β-hydroxyvaleric acid resistant mutants were derived from E. coli K-12 with 3 x 10-5 frequency. One of mutants, strain β-101, accummulated maximum amount of l-threonine (1. 9 g/liter) in medium. Among isoleucine, methionine and lysine auxotrophs derived from E. coli K-12, only methionine auxotrophs produced l-threonine. In contrast, among isoleucine, methionine and lysine auxotrophs derived from β-101, l-threonine accumulation was generally enhanced in isoleucine auxotrophs. One of isoleucine auxotrophs, strain βI-67, produced maximum amount of l-threonine (4. 7 g/liter). Methionine auxotroph, βM-7, derived from β-101 produced 3.8 g/liter, and βIM-4, methionine auxotroph derived from β1-67, produced 6.1 g/liter, when it was cultured in 3% glucose medium supplemented with 100 μg/ml of l-isoleucine and l-methionine, respectively. These l-threonine productivities of E. coli mutants were discussed with respect to the regulatory mechanisms of threonine biosynthesis. A favourable fermentation medium for l-threonine production by E. coli mutants was established by using strain βM-4.  相似文献   

9.
With the aid of papain, a plastein was synthesized from a 1 : 10 mixture of l-methionine ethyl ester and a peptic hydrolysate of soybean protein. Dialysis of the whole reaction-product yielded a methionine-incorporated plastein (Met-plastein) as the nondialyzable fraction, its yield being 78.2% on a dry-matter basis, of the whole reaction-product. Methionine content in this Met-plastein was 7.22% on a weight basis, while its content in the material hydrolysate was only 1.25%. Carboxypeptidase A treatment of Met-plastein liberated methionine at an outstandingly rapid rate. A similar, but not so outstanding, rate was observed for the methionine liberation from Met-plastein by treatment with leucine aminopeptidase. Methyl isothiocyanate treatment and subsequent cyclization yielded a mixture of methylthiohydantoins from Met-plastein. Gas chromatographic analysis of this mixture after trimethylsilylation showed a result that methionine occupied 33.2%, on a molar basis, of the total N-terminal amino acids. Lithium borohydride reduction and 6 n hydrochloric, acid hydrolysis of Met-plastein produced monomeric aminois, and their 2,4-dinitrophenylation followed by thin-layer chromatography gave a result that methionine occupied 84.9%, on a molar basis, of the total C-terminal amino acids; the residues amounting to 14.4% of the C-terminal methionine residues remained as an ethyl eater form. The selective degradation probe employing cyanogen bromide to generate free homoserine disclosed that the occurrence of the polymeric methionine-methionine sequence was little if any in Met-plastein. Based on the above experiments as well as an evaluation of the esterase activity against l-methionine ethyl ester, a possible mechanism was discussed of the papain-catalyzed synthesis of plastein in a system containing such an ester.  相似文献   

10.
Sulfur-containing amino acids (l-cysteine, l-cystine and dl-methionine) were pyrolyzed. From pyrolyzed cysteine and cystine were identified 7~8 volatile compounds including 2-methylthiazolidine which is considered to be the product of the reaction of acetaldehyde with mercaptethylamine, and from pyrolyzed methionine were identified 11 volatiles. At the same time, besides these volatile compounds, alanine, cystine and isoleucine, and alanine, isoleucine and methionine were detected in the pyrolyzed products of cysteine and cystine, respectively, but no amino acid was detected from that of methionine. The mixture of seven identified volatiles generated from l-cystine developed a pop-corn like aroma with a roasted sesame like one, and methylmercaptane seemed to be the main contributor to the pickled radish like odor produced from pyrolysis of dl-methionine. Degradation schemes of cystine and methionine were proposed.  相似文献   

11.
Certain Streptomyces strains were found to accumulate an unknown substance in culture broth when the microorganisms were grown in the medium containing dl-methionine. The substance was isolated from the culture broth as hydrochloride and was identified as 3-methylthiopropylamine (MTPA), decarboxylated product of methionine, from its melting point, chemical composition, infrared spectrum, and other properties. Cultural conditions for MTPA formation in Streptomyces sp. K 37 were investigated. The yield of MTPA from l-methionine reached about 90% with a culture medium containing corn steep liquor. Namely, 6.47 mg of MTPA per millilitre of culture broth was produced from 10 mg of l-methionine per millilitre of the growth medium. The transforming activity was found in the cells of the early culture period. MTPA-producing activity was induced by l- methionine in the medium. d-Methionine was not utilized as a substrate of the reaction with intact cells. Optimum pH for the reaction appeared to be 6.0~8.0.  相似文献   

12.
Aspergillus tamani accumulated about 20 μmoles of S-adenosylmethionine (SAM) in 1 g of dry cells when cultured secondarily in a medium containing more than 10 mm of l- methionine. The accumulation was not so high when l-methionine was replaced by d- methionine. Addition of nucleic acid-related substances was not effective for the accumulation. Addition of d, l-ethionine in place of methionine caused accumulation of S-adenosylethionine (SAE) in place of SAM. Among 100 strains of molds tested, a number of strains belonging to the genera Penicillium, Aspergillus, Rhizopus and Mucor could accumulate SAM in their mycelia. Especially Mucor jansseni had the highest ability; it accumulated 45 μmoles of SAM in 1 g of dry cells.  相似文献   

13.
l-Homoserine was prepared by the reduction of l-aspartic acid β-methyl ester with sodium borohydride in water solution without any racemization. The yield of l-homoserine was about 25% of the theoretical amount, and no product other than l-homoserine, l-aspartic acid and l-aspartic acid β-methyl ester was present in the reaction mixture. The low yield of l-homoserine was ascribed to the hydrolysis of the ester.

l-Azetidine-2-carboxylic acid could not be detected in the reaction mixture. In contrast with the reduction of l-glutamic acid γ-esters, the reduction of l-aspartic acid β-ester was not accompanied by the cyclization.  相似文献   

14.
Washed cells of facultative methylotrophs which have the serine pathway showed high activities for l-methionine formation from dl-homocysteine, in the presence of methanol as methyl donor. Strain FM 518, isolated from soil and identified as a bacterium belonging to the genus Pseudomonas, showed the highest activity for l-methionine formation and was used as the parental strain for breeding the l-methionine-producing mutants. An ethionine-resistant mutant, FE 244, derived from strain FM 518, accumulated 0.8 mg/ml l-methionine in a methanol-medium under optimum conditions.  相似文献   

15.
N-Carboxymethyl-β-alanine and four γ-glutamyl peptides—γ-l-glutamyl-l-leucine, γ-l-glutamyl-l-methionine, γ-glutamylphenylalanine and γ-glutamyltyrosine—were isolated from green gram seeds. N-Carboxymethyl-β-alanine is a compound which is isolated from natural products for the first time. An amount of γ-glutamylmethionine was far more abundance than all others.  相似文献   

16.
When 8% casein basal diet was supplemented with 0.3% dl-methionine or 0.3% dl-methionine plus 0.36% dl- or 0.18% l-threonine, the changes in urinary excretions of urea and allantoin were examined in weanling male rats of Wistar strain with the observations on the body weight gain and % nitrogen retention. Carbohydrate sources used were sucrose or an equimolar mixture of glucose and fructose (G-F) in place of pregelatinized starch used in the previous experiments.

In contrast to the previous results, differences in nitrogen utilization, expressed in term of growth rate or % nitrogen retention, became significant by the addition of 0.3% methionine to the basal diet and it was further increased by the simultaneous supplementation with 0.36% dl- or 0.18% l-threonine.

Urea excretion was the main variable in total urinary nitrogen output to cause the significant difference in % nitrogen retention between the groups. As postulated in the previous paper, thus, the use of sucrose or G-F mixture considerably exaggerated these group-differences in such various indices as body weight gain and % nitrogen retention, and this trend became more distinct in the urea and allantoin excretions.

Liver arginase activity inversely changed with urea excretion, but proportionately to the qualitative improvement of dietary protein by the addition of methionine or methionine plus threonine. Changes in liver glutamic dehydrogenase activity were also parallel with the improvement of dietary protein quality.  相似文献   

17.
In studies on the production of S-adenosyI- l-methionine (AdoMet) by Saccharomyces sake Kyokai No. 6 in a bench-scale fermentor, the rate of growth of the organism in a medium containing sucrose and urea as carbon and nitrogen sources, respectively, increased with a higher agitation speed (500 rpm) or sucrose feeding, but the cellular content of AdoMet was lower than that with a lower agitation speed (300 rpm) or ethanol feeding. The additin of l-methionine was necessary for enhancement of both growth and AdoMet production. The l-methionine added (15g/l) was efficiently incorporated into the cells during the course of the cultivation, about 20 % of the l-methionine being found as AdoMet in the cells. The ultraviolet absorbance (258 nm) based on the extracted AdoMet comprised 73 % of the total ultraviolet absorbance of material extracted from the cells, whereas that based on S-adenosylhomocysteine was very low (1.4%).  相似文献   

18.
The excellent l-leucine producing mutant No. 218, derived from a biotin requiring glutamic acid producing strain, is methionine and isoleucine auxotrophic. A suboptimum growth condition made by adding a limiting amount of isoleucine was necessary for the maximum production of l-leucine. On the other hand, methionine was indifferent to the productivity if sufficiently supplied for growth.

Biotin of more than 50 μg/liter caused the accumulation of l-leucine; less than 50 μg/liter, however, gave a drastic change in accumulation pattern from l-leucine to l-glutamic acid. Strain No. 218 produced 28 mg/ml of l-leucine after 72 hr cultivation when 13 % glucose was supplied as a carbon source, thus giving the yield of 21.6%.

Effects on l-leucine production of concentrations of inorganic salts, pH, temperature and aeration were also investigated.  相似文献   

19.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

20.
3-Methylthiopropylamine (MTPA) formation from l-methionine in Streptomyces sp. K37 was studied in detail. The reaction was confirmed to be catalyzed by the decarboxylase of l-methionine. The properties of the enzyme were studied in detail using acetone dried cells or cell-free extract. The enzyme was specific for l-methionine. Pyridoxal phosphate stimulated the reaction and protected the enzyme against heat inactivation. The optimum pH for the reaction was 6.0~8.0 and the optimum temperature was about 40°C. Carbonyl reagents (10?2~10?3 m) inhibited the reaction completely, and silver nitrate and mercuric chloride (10?3~10?4 m) markedly inhibited the reaction. Km value for the reaction was 1.21 × 10?5 m. l-Methionine assay using the decarboxylase was attempted and was found to be applicable to practical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号