首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23   总被引:1,自引:0,他引:1  
A biocatalytic process for the hydration of adiponitrile to 5-cyanovaleramide has been developed which can be run to higher conversion, produces more product per weight of catalyst, and generates significantly less waste products than alternate chemical processes. The biocatalyst consists of Pseudomonas chlororaphis B23 microbial cells immobilized in calcium alginate beads. The cells contain a nitrile hydratase (EC 4.2.1.84) which catalyzes the hydration of adiponitrile to 5-cyanovaleramide with high regioselectivity, and with less than 5% selectivity to byproduct adipamide. Fifty-eight consecutive batch reactions with biocatalyst recycle were run to convert a total of 12.7 metric tons of adiponitrile to 5-cyanovaleramide. At 97% adiponitrile conversion, the yield of 5-cyanovaleramide was 13.6 metric tons (93% yield, 96% selectivity), and the total weight of 5-cyanovaleramide produced per weight of catalyst was 3150 kg/kg (dry cell weight).  相似文献   

2.
Nitrile hydratase of Pseudomonas chlororaphis B23 was completely stabilized by the addition of 22 mM n-butyric acid. The enzyme was purified from extracts of methacrylamide-induced cells of P. chlororaphis B23 in eight steps. At the last step, the enzyme was crystallized by adding ammonium sulfate. The crystallized enzyme appeared to be homogeneous from analysis by polyacrylamide gel electrophoresis, analytical ultracentrifuge, and double diffusion in agarose. The enzyme has a molecular mass of about 100 kDa and consists of four subunits identical in molecular mass (approximately 25 kDa). The enzyme contained approximately 4 mol iron/mol enzyme. The concentrated solution of highly purified nitrile hydratase had a pronounced greyish green color and exhibited a broad absorption in visible range with a absorption maxima at 720 nm. A loss of enzyme activity occurred in parallel with the disappearance of the absorption in the visible range under a variety of conditions. The enzyme catalyzed stoichiometrically the hydration of nitrile to amide, and no formation of acid and ammonia were detected. The enzyme was active toward various aliphatic nitriles, particularly, nitriles with 3-6 carbon atoms, e.g. propionitrile, n-butyronitrile, acrylonitrile and cyclopropyl cyanide, served as the most suitable substrates.  相似文献   

3.
4.
An amidase produced by Pseudomonas chlororaphis B23 was purified and characterized. The purification procedure used included ammonium sulfate precipitation and hydrophobic, anion-exchange, gel filtration, and ceramic hydroxyapatite chromatography steps. This amidase has a native molecular mass of about 105 kDa and is a homodimer whose subunits have a molecular mass of 54 kDa. The enzyme exhibited maximal activity at 50(deg)C and at pH values ranging from 7.0 to 8.6. We found no evidence that metal ions were required, and the enzyme was inhibited by several thiol reagents. This amidase exhibited activity against a broad range of aliphatic and aromatic amides and exhibited enantioselectivity for several aromatic amides, including 2-phenylpropionamide (enantiomeric excess [ee] = 100%), phenylalaninamide (ee = 55%), and 2-(4-chlorophenyl)-3-methylbutyramide (ee = 96%), but not 2-(6-methoxy-2-naphthyl)propionamide (the amide form of naproxen) (ee = 0%). The characteristics of the P. chlororaphis B23 amidase are the same as the characteristics of enantioselective amidases described by Mayaux et al. (J. F. Mayaux, E. Cerbelaud, F. Soubrier, D. Faucher, and D. Petre, J. Bacteriol. 172:6764-6773, 1990; J. F. Mayaux, E. Cerbelaud, F. Soubrier, P. Yeh, F. Blanche, and D. Petre, J. Bacteriol. 173:6694-6704, 1991) and Kobayashi et al. (M. Kobayashi, H. Komeda, T. Nagasawa, M. Nishiyama, S. Horinouchi, T. Beppu, H. Yamada, and S. Shimizu, Eur. J. Biochem. 217:327-336, 1993).  相似文献   

5.
The nitrile hydratase (NHase) of Pseudomonas chlororaphis B23, which is composed of two subunits, alpha and beta, catalyzes the hydration of nitrile compounds to the corresponding amides. The NHase gene of strain B23 was cloned into Escherichia coli by the DNA-probing method with the NHase gene of Rhodococcus sp. strain N-774 as the hybridization probe. Nucleotide sequencing revealed that an amidase showing significant similarity to the amidase of Rhodococcus sp. strain N-774 was also coded by the region just upstream of the subunit alpha-coding sequence. In addition to these three proteins, two open reading frames, P47K and OrfE, were found just downstream of the coding region of subunit beta. The direction and close locations to each other of these open reading frames encoding five proteins (amidase, subunits alpha and beta, P47K, and OrfE, in that order) suggested that these genes were cotranscribed by a single mRNA. Plasmid pPCN4, in which a 6.2-kb sequence covering the region coding for these proteins is placed under control of the lac promoter, directed overproduction of enzymatically active NHase and amidase in response to addition of isopropyl-beta-D-thiogalactopyranoside. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of subunits alpha and beta of NHase was about 10% of the total cellular proteins and that an additional 38-kDa protein probably encoded by the region upstream of the amidase gene was also produced in a large amount. The 38-kDa protein, as well as P47K and OrfE, appeared to be important for efficient expression of NHase activity in E. coli cells, because plasmids containing the NHase and amidase genes but lacking the region coding for the 38-kDa protein or the region coding for P47K and OrfE failed to express efficient NHase activity.  相似文献   

6.
Rhamnolipids, naturally occurring biosurfactants constructed of rhamnose sugar molecules and β-hydroxyalkanoic acids, have a wide range of potential commercial applications. In the course of a survey of 33 different bacterial isolates, we have identified, using a phenotypic assay for rhamnolipid production, a strain of the nonpathogenic bacterial species Pseudomonas chlororaphis that is capable of producing rhamnolipids. Rhamnolipid production by P. chlororaphis was achieved by growth at room temperature in static cultures of a mineral salts medium containing 2% glucose. We obtained yields of roughly 1 g/liter of rhamnolipids, an amount comparable to the production levels reported in Pseudomonas aeruginosa grown with glucose as the carbon source. The rhamnolipids produced by P. chlororaphis appear to be exclusively the mono-rhamnolipid form. The most prevalent molecular species had one monounsaturated hydroxy fatty acid of 12 carbons and one saturated hydroxy fatty acid of 10 carbons. P. chlororaphis, a nonpathogenic saprophyte of the soil, is currently employed as a biocontrol agent against certain types of plant fungal diseases. The pathogenic nature of all bacteria previously known to produce rhamnolipids has been a major obstacle to commercial production of rhamnolipids. The use of P. chlororaphis therefore greatly simplifies this matter by removing the need for containment systems and stringent separation processes in the production of rhamnolipids.  相似文献   

7.
Rhamnolipids, naturally occurring biosurfactants constructed of rhamnose sugar molecules and beta-hydroxyalkanoic acids, have a wide range of potential commercial applications. In the course of a survey of 33 different bacterial isolates, we have identified, using a phenotypic assay for rhamnolipid production, a strain of the nonpathogenic bacterial species Pseudomonas chlororaphis that is capable of producing rhamnolipids. Rhamnolipid production by P. chlororaphis was achieved by growth at room temperature in static cultures of a mineral salts medium containing 2% glucose. We obtained yields of roughly 1 g/liter of rhamnolipids, an amount comparable to the production levels reported in Pseudomonas aeruginosa grown with glucose as the carbon source. The rhamnolipids produced by P. chlororaphis appear to be exclusively the mono-rhamnolipid form. The most prevalent molecular species had one monounsaturated hydroxy fatty acid of 12 carbons and one saturated hydroxy fatty acid of 10 carbons. P. chlororaphis, a nonpathogenic saprophyte of the soil, is currently employed as a biocontrol agent against certain types of plant fungal diseases. The pathogenic nature of all bacteria previously known to produce rhamnolipids has been a major obstacle to commercial production of rhamnolipids. The use of P. chlororaphis therefore greatly simplifies this matter by removing the need for containment systems and stringent separation processes in the production of rhamnolipids.  相似文献   

8.
A dihydropyrimidine dehydrogenase mutant of Pseudomonas chlororaphis ATCC 17414 was isolated and characterized in this study. Initially, reductive catabolism of uracil was confirmed to be active in ATCC 17414 cells. Following chemical mutagenesis and d-cycloserine counterselection, a mutant strain unable to utilize uracil as a nitrogen source was identified. It was also unable to utilize thymine as a nitrogen source but could use either dihydrouracil or dihydrothymine as a sole source of nitrogen. Subsequently, it was determined that the mutant strain was deficient for the initial enzyme in the reductive pathway dihydropyrimidine dehydrogenase. The lack of dehydrogenase activity did not seem to have an adverse effect upon the activity of the second reductive pathway enzyme dihydropyrimidinase activity. It was shown that both dihydropyrimidine dehydrogenase and dihydropyrimidinase levels were affected by the nitrogen source present in the growth medium. Dihydropyrimidine dehydrogenase and dihydropyrimidinase activities were elevated after growth on uracil, thymine, dihydrouracil or dihydrothymine as a source of nitrogen.  相似文献   

9.
A nitrate reductase was solubilized with Triton X-100 from the membranes of Pseudomonas chlororaphis DSM 50135 grown microaerobically in the presence of nitrate. Like other membrane-bound nitrate reductases, it contains three subunits, of 129, 66 (64) and 24 kDa, referred to in the literature as alpha, beta and gamma, respectively. Electrocatalytic studies revealed that only the membrane-bound, not the solubilized form of the enzyme, can accept electrons from a menaquinone analog, menadione, whereas both forms can accept electrons from methylviologen. The isolated enzyme possesses several iron-sulfur clusters and a molybdopterin guanine dinucleotide active center. The iron-sulfur clusters can be grouped in two classes according to their redox properties, the high-potential and low-potential clusters. In the as-isolated enzyme, two forms of the molybdenum center, high- and low-pH, are detectable by electron paramagnetic resonance spectroscopy. The low-pH form shows a hyperfine splitting due to a proton, suggesting the presence of an -OHx ligand. Dithionite reduces the Mo(V) center to Mo(IV) and subsequent reoxidization with nitrate originates a new Mo(V) signal, identical to the oxidized low-pH form but lacking its characteristic hyperfine splitting. The isolated preparation also contains heme c (in a sub-stoichiometric amount) with the ability to relay electrons to the molybdenum center, suggesting that this nitrate reductase may contain heme c instead of the heme b usually found in this class of enzymes.  相似文献   

10.
Several kinds of mutants of Pseudomonas melanogenum were derived by mutational treatment with N-methyl-N’-nitro-N-nitrosoguanidine, and selected for 3,4-dihydroxyphenyl-l-alanine (l-DOPA) production by newly devised screening method which was carried out on agar plates based on violet-black colour formation by the reaction of l-DOPA with iron ion. Mutants tested were; glucose-insensitive mutant, cysteine-insensitive mutant, 3-amino-tyrosine-resistant mutant and p-fluorophenylalanine-resistant mutant. Some colonies isolated by monocolony procedure without mutagenic treatment were also tested. Among the 3-aminotyrosine-resistant mutants many good l-DOPA producers were found.

An 3-aminotyrosine-resistant mutant, strain ATN–36, produced 14 to 15 mg/ml of l-DOPA from 26 mg/ml of l-tyrosine (68 % in molar conversion ratio). When the cell concentration in reaction mixture was increased to 4-times the concentration of culture broth, l-DOPA production reached to 21 mg/ml from 52 mg/ml of tyrosine. An enzymatic basis of the high l-DOPA productivity of the improved mutants was found to be due to the increased tyrosinase activity (150 to 160% of the parental strain) of the mutants.  相似文献   

11.
12.
Enzymatic Production of l-Citrulline by Pseudomonas putida   总被引:1,自引:1,他引:1       下载免费PDF全文
To develop an efficient method for the production of l-citrulline, optimum conditions for the conversion of l-arginine to l-citrulline by microbial l-arginine deiminase and for production of the enzyme were studied. A number of micro-organisms were screened to test their ability to form and accumulate l-citrulline from l-arginine. Pseudomonas putida was selected as the best organism. With this organism, enzyme activity as high as 9.20 units per ml could be produced by a shaking culture at 30 C in a medium containing glucose, ammonium phosphate, l-arginine hydrochloride, yeast extract, peptone, and inorganic salts. Appropriate addition of a surface active agent to the reaction mixture was found to shorten the time required for the conversion. A large amount of l-arginine hydrochloride was converted stoichiometrically to l-citrulline in 62 hr at 37 C. Accumulated l-citrulline was readily isolated in pure form by ordinary procedures with ion-exchange resins. Yields of isolated l-citrulline of over 90.5% from l-arginine hydrochloride were easily attainable.  相似文献   

13.
Enzymatic Production of l-Alanine by Pseudomonas dacunhae   总被引:5,自引:2,他引:3       下载免费PDF全文
To establish an advantageous method for the production of l-alanine, a procedure was studied for converting l-aspartic acid to l-alanine by microbial l-aspartic beta-decarboxylase. A number of organisms were screened to test their ability to form and accumulate alanine from aspartic acid. Pseudomonas dacunhae was selected as the most advantageous organism. With this organism, enzyme activity as high as 3,910 muliters of CO(2) per hr per ml of medium could be produced by shaking the culture at 30 C in the medium containing ammonium fumarate, sodium fumarate, corn steep liquor, peptone, and inorganic salts. For the enzymatic conversion of l-aspartic acid to l-alanine, the culture broth was employed as the enzyme source. A large amount of l-aspartic acid (as much as 40% of the broth) was converted stoichiometrically to alanine in 72 hr at 37 C. Furthermore, appropriate addition of a surface-active agent to the reaction mixture was found to be highly effective in shortening the time required for the conversion. Accumulated l-alanine was readily isolated in pure form by ordinary procedures with ion-exchange resins. Yields of isolated l-alanine of over 90% from l-aspartic acid were easily attainable.  相似文献   

14.
It was found that the antifungal activity of Pseudomonas chlororaphis SPB1217 is due to phenazine-1-carboxylic acid, phenazine-1-carboxamide, and two unidentified exometabolites. The carbon source used for the growth of this bacterial strain and iron ions present in the medium considerably influenced the proportion between the antifungal metabolites. The maximum production of phenazines was observed in the media enriched in amino acids and iron ions. The absence of correlation between the production of phenazines and antifungal activity indicates that phenazines are not the only antifungal metabolites of the strain. Organic acids as nutrient sources provide for more intense production of exometabolites and for a higher level of antifungal activity than sugars.  相似文献   

15.
16.
Formulations of Pseudomonas strains with long-term shelf life are needed for commercial use in biological disease control and growth promotion in crops. In the present work Pseudomonas chlororaphis (Pc) 63-28 formulated with coconut fiber [moisture content (MC) of 80%], talc (MC 8%) or peat (MC 40%), with or without the addition of carboxymethylcellulose or xanthan gum, and formulations of Pc 63-28 and P. chlororaphis TX-1 in coconut fiber with water contents (v:v) of 75%, 45%, and 25%, were evaluated in terms of shelf life and cell viability. The shelf life of Pc 63-28 was longer when formulated in coconut fibre with a MC was 80% than in the other formulations and longer at 3 ± 1 °C compared to 22 ± 1 °C. Densities of viable Pc 63-28 cells in coconut fiber stored at 3 ± 1 °C did not decline significantly during 224 days when the MC was 80% and within 120 days at 75% MC. Densities of Pc TX-1 in coconut fiber of 75% MC did not decline within 60 days at 3 ± 1 °C. P. chlororaphis 63-28 survived longer in deionized water and buffer than in canola oil. Cells of Pc 63-28 cells formulated in coconut fibre of 80% MC after storage for 140 days at 3 ± 1 °C in coconut fiber improved hydroponic growth of hydroponic lettuce and better than cells freshly recovered from culture. We conclude that coconut fiber is a carrier of superior performance in maintaining shelf life of Pseudomonas strains. The observed shelf life would be sufficient for practical use of Pseudomonas strains as tools for disease control and growth promotion in crops.  相似文献   

17.
A strain of Fusarium graminearum produced extracellular beta-glucosidase (beta-d-glucoside glucohydrolase [EC 3.2.1.21]) subject to carbon catabolite repression. Derepressed mutants were selectively isolated by the use of 2-deoxyglucose, a nonmetabolizable catabolic repressor. On each plate of cellobiose and 2-deoxy-glucose inoculated with 10 spores and irradiated with UV light, a few colonies emerged. Comparative growth experiments with one of the derepressed mutants and the parent strain showed that the mutant produced beta-glucosidase in the presence of glucose. Furthermore, the same mutant produced more beta-glucosidase than did the wild-type strain on cellobiose alone.  相似文献   

18.
Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid that can be used for the synthesis of chiral materials and nonnatural peptides. The aim of this study was to accumulate DHHA by engineering Pseudomonas chlororaphis GP72, a nonpathogenic strain that produces phenazine-1-carboxylic acid and 2-hydroxyphenazine. First, the phzF deletion mutant DA1 was constructed, which produced 1.91 g/L DHHA. Moreover, rpeA and pykF were disrupted and then ppsA and tktA were co-expressed in strain DA1. The resulting strain DA4 increased DHHA concentration to 4.98 g/L, which is 2.6-fold than that of DA1. The effects of the addition of glucose, glycerol, l-tryptophan, and Fe3+on DHHA production were also investigated. Strain DA4 produced 7.48 g/L of DHHA in the culture medium in the presence of 12 g/L glucose and 3 mM Fe3+, which was 1.5-fold higher than the strain in the original fermentation conditions. These results indicate the potential of P. chlororaphis GP72 as a DHHA producer.  相似文献   

19.
Analysis of the nitrile hydratase gene cluster involved in nitrile metabolism of Pseudomonas chlororaphis B23 revealed that it contains one open reading frame encoding aldoxime dehydratase upstream of the amidase gene. The amino acid sequence deduced from this open reading frame shows similarity (32% identity) with that of Bacillus phenylacetaldoxime dehydratase (Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., and Asano, Y. (2000) Biochemistry 39, 800-809). The gene product expressed in Escherichia coli catalyzed the dehydration of aldoxime into nitrile. The Pseudomonas aldoxime dehydratase (OxdA) was purified from the E. coli transformant and characterized. OxdA shows an absorption spectrum with a Soret peak that is characteristic of heme, demonstrating that it is a hemoprotein. For its activity, this enzyme required a reducing reagent, Na2S2O4, but did not require FMN, which is crucial for the Bacillus enzyme. The enzymatic reaction was found to be catalyzed when the heme iron of the enzyme was in the ferrous state. Calcium as well as iron was included in the enzyme. OxdA reduced by Na2S2O4 had a molecular mass of 76.2 kDa and consisted of two identical subunits. The kinetic parameters of OxdA indicated that aliphatic aldoximes are more effective substrates than aromatic aldoximes. A variety of spectral shifts in the absorption spectra of OxdA were observed upon the addition of each of various compounds (i.e. redox reagents and heme ligands). Moreover, the addition of the substrate to OxdA gave a peak that would be derived from the intermediate in the nitrile synthetic reaction. P. chlororaphis B23 grew and showed the OxdA activity when cultured in a medium containing aldoxime as the sole carbon and nitrogen source. Together with these findings, Western blotting analysis of the extracts using anti-OxdA antiserum revealed that OxdA is responsible for the metabolism of aldoxime in vivo in this strain.  相似文献   

20.
Temperature-sensitive mutants producing L-serine efficiently from glycine were obtained from the facultative methylotroph Pseudomonas MS 31. Forty-five mutant strains showed adequate growth on methanol at 30°C but little or no growth at 37°C. Fourteen of these mutants produced L- serine more efficiently than the wild-type strain. The typical mutant strain ts 162 showed a high conversion rate in glycine-to-L-serine when the cultivation temperature was changed from a permissive (30°C) to non-permissive state (38?42°C) together with the addition of glycine and methanol after adequate growth. The mutant strain accumulated 6.8 mg L-serine from 12 mg glycine per ml culture under optimum conditions. The reduction of L-serine degrading activity in the mutant strain seemed to contribute to the high productivity of L-serine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号