首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the nucleobase and the ribose moieties in a 14-nt RNA cUUCGg hairpin-loop uniformly labeled with 13C and 15N were studied by 13C spin relaxation experiments. R1, R and the 13C-{1H} steady-state NOE of C6 and C1′ in pyrimidine and C8 and C1′ in purine residues were obtained at 298 K. The relaxation data were analyzed by the model-free formalism to yield dynamic information on timescales of pico-, nano- and milli-seconds. An axially symmetric diffusion tensor with an overall rotational correlation time τc of 2.31±0.13 ns and an axial ratio of 1.35±0.02 were determined. Both findings are in agreement with hydrodynamic calculations. For the nucleobase carbons, the validity of different reported 13C chemical shift anisotropy values (Stueber, D. and Grant, D. M., 2002 J. Am. Chem. Soc. 124, 10539–10551; Fiala et al., 2000 J. Biomol. NMR 16, 291–302; Sitkoff, D. and Case, D. A., 1998 Prog. NMR Spectroscopy 32, 165–190) is discussed. The resulting dynamics are in agreement with the structural features of the cUUCGg motif in that all residues are mostly rigid (0.82 < S2 < 0.96) in both the nucleobase and the ribose moiety except for the nucleobase of U7, which is protruding into solution (S2 = 0.76). In general, ribose mobility follows nucleobase dynamics, but is less pronounced. Nucleobase dynamics resulting from the analysis of 13C relaxation rates were found to be in agreement with 15N relaxation data derived dynamic information (Akke et al., 1997 RNA 3, 702–709). Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

2.
Based on the HSQC scheme, we have designed a 2D heterocorrelated experiment which combines constant time (CT) 13C and variable time (VT) 15N chemical shift labelling. Although applicable to all carbons, this mode is particularly suitable for simultaneous recording of methyl-carbon and nitrogen chemical shifts at high digital resolution. The methyl carbon magnetisation is in the transverse plane during the whole CT period (1/JCC=28.6 ms). The magnetisation originating from NH protons is initially stored in the 2HzNz state, then prior to the VT chemical shift labelling period is converted into 2HzNy coherence. The VT -15N mode eliminates the effect of 1 J N,CO and 1,2 J N,CA coupling constants without the need for band-selective carbon pulses. An optional editing procedure is incorporated which eliminates signals from CH2 groups, thus removing any potential overlap with the CH3 signals. The CT-13CH3,VT-15N HSQC building block is used to construct two 3D experiments: 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH. Combined use of these experiments yields proton and heteronuclear chemical shifts for moieties experiencing NOEs with CH3 and NH protons. These NOE interactions are resolved as a consequence of the high digital resolution in the carbon and nitrogen chemical shifts of CH3 and NH groups, respectively. The techniques are illustrated using a double labelled sample of the CH domain from calponin.  相似文献   

3.
Phytocassanes and momilactones are the major diterpenoid phytoalexins inductively produced in rice as bioactive substances. Regardless of extensive studies on the biosynthetic pathways of these phytoalexins, bioconversion of diterpene hydrocarbons is not shown in planta. To elucidate the entire biosynthetic pathways of these phytoalexins, uniformly 13C-labeled ent-cassadiene and syn-pimaradiene were enzymatically synthesized with structural verification by GC–MS and 13C-NMR. Application of the 13C-labeled substrates on rice leaves led to the detection of 13C-labeled metabolites using LC-MS/MS. Further application of this method in the moss Hypnum plumaeforme and the nearest out-group of Oryza species Leersia perrieri, respectively, resulted in successful bioconversion of these labeled substrates into phytoalexins in these plants. These results demonstrate that genuine biosynthetic pathways from these diterpene hydrocarbons to the end product phytoalexins occur in these plants and that enzymatically synthesized [U-13C20] diterpene substrates are a powerful tool for chasing endogenous metabolites without dilution with naturally abundant unlabeled compounds.  相似文献   

4.
Abstract

It was found by 1H, 13C and 15N NMR study that substitution of 4,9-dihydro-4, 6-dimethyl-9-oxo-3-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosyl) imidazo [1,2-a]purine (wyosine triacetate, 1) at C2 position with electronegative groups CH3O and C6H5CH2O results in a noticeable electron distribution disturbance in the “left-hand” imidazole ring and a significant increase in the North conformer population of the sugar moiety.  相似文献   

5.
Summary In goldfish intestine chloride was substituted by large inorganic anions (gluconate or glucuronate) either mucosally, serosally or bilaterally. Changes in intracellular activities of chloride (a i Cl), sodium (a i Na+) and potassium (a i K+), pHi, relative volume, membrane and transepithelial potentials, transepithelial resistance and voltage divider ratio were measured. Control values were:a i Cl=35 meq/liter, a i Na+=11 meq/liter and a i K+=95 meq/liter. During bilateral substitution the latter two did not change while a i Cl dropped to virtually zero.Mucosal membrane potentials (ms) were: control,-53 mV; serosal substitution,-51 mV; bilateral substitution,-66 mV; while during mucosal substitution a transient depolarization occurred and the final steady state ms was-66 mV.During control and bilateral substitution the transepithelial potentials (ms) did not differ from zero. During unilateral substitutions ms was small, in the order of magnitude of the errors in the liquid junction potentials near the measuring salt bridges.During bilateral substitution pH i increased 0.4 pH units. Cellular volume decreased during mucosal substitution to 88% in 40 min; after serosal substitution it transiently increased, but the new steady-state value was not significantly above its control value.Three minutes after mucosal substitution ana i Cl of approx. 10 meq/liter was measured.Chemical concentrations of Na, K and Cl were determined under control conditions and bilateral substitution. Cl concentrations were also measured as a function of time after unilateral substitutions.The data indicate an electrically silent chloride influx mechanism in the brush border membrane and an electrodiffusional chloride efflux in the basolateral membrane. A substantial bicarbonate permeability is present in the basolateral membrane. The results are in agreement with the observed changes in membrane resistances, volume changes and pH changes.  相似文献   

6.
This paper describes a modified noninvasive microtest electrophysiological technology (NMT) for vacuolar H+ flux detection. In this NMT system, the vacuole isolation procedure and buffer slope were modified, and the measuring errors from small spherical geometry were corrected. The trends in changes of vacuolar H+ flux (ΔH+ flux) after ATP or PPi supply calculated by NMT were consistent with the activities of V-ATPase and PPase measured by traditional methods. These findings indicate that our modified NMT is an appropriate method for vacuolar H+ flux detection.  相似文献   

7.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

8.
Cell suspensions of a respiratory deficient mutant of Saccharomyces cerevisiae were monitored by in vivo 31P and 13C Nuclear Magnetic Resonance in order to evaluate the effect of ethanol in intracellular pH and metabolism. In the absence of an added energy source, ethanol caused acidification of the cytoplasm, as indicated by the shift to higher field of the resonance assigned to the cytoplasmic orthophosphate. Under the experimental conditions used this acidification was not a consequence of an increase in the passive influx of H+. With cells energized with glucose, a lower value for the cytoplasmic pH was also observed, when ethanol was added. Furthermore, lower levels of phosphomonoesters were detected in the presence of ethanol, indicating that an early event in glycolysis is an important target of the ethanol action. Acetic acid was identified as responsible for the acidification of the cytoplasm, in experiments where [13C]ethanol was added and formation of labeled acetic acid was detected. The intracellular and the extracellular concentrations of acetic acid were respectively, 30 mM and 2 mM when 0.5% (120 mM) [13C]ethanol was added.Abbreviations Pi inorganic phosphate - Pic inorganic phosphate in the cytoplasm - Piv inorganic phosphate in the vacuole - tP terminal phosphate in polyphosphate  相似文献   

9.
Cost effective 13C/15N-isotope labeling of the avirulence protein AVR4 (10 kDa) of the fungal tomato pathogen Cladosporium fulvum was achieved with the methylotrophic yeast Pichia pastoris in a fermentor. The 13C/15N-labeled AVR4 protein accumulated to 30 mg/L within 48 h in an initial fermentation volume of only 300 mL, while prolonged optimized overexpressions yielded 126 mg/L. These protein yields were 24-fold higher in a fermentor than in flask cultures. In order to achieve these protein expression levels, we used the methanol-utilizing strain (Mut+) of Pichia pastoris which has a high growth rate while growing on methanol as the only carbon source. In contrast, the methanol-sensitive strain (MutS) could intrinsically yield comparable protein expression levels, but at the expense of additional carbon sources. Although both strains are generally used for heterologous protein expression, we show that the costs for 13C-isotope labeling can be substantially reduced using the Mut+ strain compared to the MutS strain, as no 13C3-glycerol is required during the methanol-induction phase. Finally, nitrogen limitations were precluded for 15N-labeling by an optimal supply of 10 g/L (15NH4)2SO4 every 24 h.  相似文献   

10.
The ability of plants to rapidly replace photosynthetic tissues following defoliation represents a resistance strategy referred to as herbivory tolerance. Rapid reprioritization of carbon allocation to regrowing shoots at the expense of roots following defoliation is a widely documented tolerance mechanism. An experiment was conducted in a controlled environment to test the hypothesis that herbivory-sensitive perennial grasses display less flexibility in reprioritizing carbon allocation in response to defoliation than do grasses possessing greater herbivory tolerance. An equivalent proportion of shoot biomass (60% dry weight) was removed from two C4 perennial grasses recognized as herbivory-sensitive, Andropogon gerardii and Schizachyrium scoparium, and two C4 perennial grasses recognized as herbivory-tolerant, Aristida purpurea and Bouteloua rigidiseta. Both defoliated and undefoliated plants were exposed to 13CO2 for 30 min, five plants per species were harvested at 6, 72 and 168 h following labeling, and biomass was analyzed by isotope ratio mass spectrometry. The tallgrass, A. geraiddii, exhibited inflexible allocation priorities while the shortgrass, B. rigidiseta, exhibited flexible allocation priorities in response to defoliation which corresponded with their initial designations as herbivory-sensitive and herbivory-tolerant species, respectively. A. gerardii had the greatest percentage and concentration of 13C within roots and lowest percentage of 13C within regrowth of the four species evaluated. In contrast, B. rigidiseta had a greater percentage of 13C within regrowth than did A. gerardii, the greatest percentage of 13C within new leaves of defoliated plants, and the lowest concentration of 13C within roots follwing defoliation. Although both midgrasses, S. scoparium and A. purpurea, demonstrated flexible allocation priorities in response to defoliation, they were counter to those stated in the initial hypothesis. The concentration of 13C within new leaves of S. scoparium increased in response to a single defoliation while the percentage and concentration of 13C within roots was reduced. A. purpurea was the only species in which the percentate of 13C within new leaves decreased while the percentage of 13C within roots increased following defoliation. The most plausible alternative hypothesis to explain the inconsistency between the demonstrated responsiveness of allocation priorities to defoliation and the recognized herbivory resistance of S. scoparium and A. purpurea is that the relative ability of these species to avoid herbivory may make an equal or greater contribution to their overall herbivory resistance than does herbivory tolerance. Selective herbivory may contribute to S. scoparium's designation as a herbivorysensitive species even though it possesses flexible allocation priorities in response to defoliation. Alternatively, the recognized herbivory resistance of A. purpurea may be a consequence of infrequent and/or lenient herbivory associated with the expression of avoidance mechanisms, rather than the expression of tolerance mechanisms. A greater understanding of the relative contribution of tolerance and avoidance strategies of herbivory resistance are required to accurately interpret how herbivory influences plant function, competitive interactions, and species abundance in grazed communities.  相似文献   

11.
Translocation of carbon and nitrogen within a single source-sink unit, comprising a trifoliated leaf, the axillary pod and the subtending internode, and from this unit to the rest of the plant was examined in soybean (Glycine max L. cv. Akishirome) plant by feeding 13CO2 and 15NO3. The plants were grown at two levels of nitrogen in the basal medium, i.e. low-N (2 g N m–2) and high-N (35 g N m–2) and a treatment of depodding was imposed by removing all the pods from the plant, except the pod of the source sink unit, 13 days after flowering. The plants at high-N accumulated more biomass in its organs compared to low-N and pod removal increased the weight of the vegetative organs. When the terminal leaflet of the source-sink unit was fed with 13CO2, almost all of the radioactive materials were retained inside the source-sink unit and translocation to rest of the plants was insignificant under any of the treatments imposed. Out of the13C exported by the terminal leaflet, less than half went into the axillary pod, as the lateral leaflets claimed equal share and very little material was deposited in the petiole. Pod removal decreased 13C export at high-N , but not at low-N. Similar to 13C, the source-sink unit retained all the 15N fed to the terminal leaflet at high-N. At low-N, the major part of 15N partitioning occurred in favour of the rest of the plant outside the source-sink unit, but removal of the competitve sinks from the rest of the plants nullified any partitioning outside the unit. Unlike the situation in 13C, no partitioning of 15N occurred in favour of the lateral leaflets from the terminal leaflet inside the unit. It is concluded that sink demand influences partitioning of both C and N and the translocation of carbon is different from that of nitrogen within a source-sink unit. The translocation of the N is more adjustive to a demand from other sink units compared to the C.  相似文献   

12.
Chemically synthesized genes encodingEscherichia coli tRNA 1 Leu and tRNA 2 Leu were ligated into the plasmid pTrc99B. then transformed intoEscherichia coli MT102, respectively. The positive transformants, named MT-Leu1 and MT-Leu2, were confirmed by DNA sequencing, and the conditions of cultivation for the two transformants were optimized. As a result, leucinc accepting activity of their total tRNA reached 810 and 560 pmol/A260, respectively: the content of tRNA 1 Leu was 50% of total tRNA from MT-Leu1, while that of tRNA 2 Leu was 30% of total tRNA from MT-Leu2. Both tRNALeus from their rotal tRNs were fractionated to 1 600 pmol/A260 after DEAE-Sepharose and BD-cellulose column chromatography. The accurate kinetic constants of aminoacylation of the two isoacceptors of tRNALeu catalyzed by leucyl-tRNA synthetase were determined. Project supported by the National Natural Science Foundation of China (Grant No. 39570164).  相似文献   

13.
The disappearance of 2-13C-acetate and the subsequent incorporation of label into cellular metabolites were followed in denitrifying cells of Thiobacillus versutus by 13C NMR spectroscopy. In cells grown under acetate-limitation, the specific rate of consumption was idependent of the density of the cell suspension. An isotopic steady state was reached within 30 min if sufficient substrate was added to the cell suspension. In cells grown under nitrate-limitation, the consumption of 2-13C-acetate proceeded at a significantly lower rate. The decrease and final disappearance of 2-13C-acetate were accompanied by incorporation of 13C into glutamate, glutamine, and by the release of labeled HCO 3 and CO2. The appearance of a broad resonance being the methyl endgroup of poly-3-hydroxybutyrate (PHB) was indicative for PHB mobilization during the incubation. The sequence of label incorporation and the distribution among the various carbon nuclei were consistent with the operation of the tricarboxylic acid cycle.  相似文献   

14.
Summary Mouse hepatocytes in primary monolayer culture (4 hr) were exposed for 10 min at 37°C to anisosmotic medium of altered NaCl concentration. Hepatocytes maintained constant relative cell volume (experimental volume/control volume) as a function of external medium relative osmolality (control mOsm/experimental mOsm), ranging from 0.8 to 1.5. In contrast, the relative cell volume fit a predicted Boyle-Van't Hoff plot when the experiment was done at 4°C. Mouse liver slices were used for electrophysiologic studies, in which hepatocyte transmembrane potential (V m ) and intracellular K+ activity (a K i ) were recorded continuously by open-tip and liquid ion-exchanger ion-sensitive glass microelectrodes, respectively. Liver slices were superfused with control and then with anisosmotic medium of altered NaCl concentration.V m increased (hyperpolarized) with hypoosmotic medium and decreased (depolarized) with hyperosmotic medium, and ln [10(experimentalV m /controlV m )] was a linear function of relative osmolality (control mOsm/experimental mOsm) in the range 0.8–1.5. Thea K i did not change when medium osmolality was decreased 40–70 mOsm from control of 280 mOsm. Similar hypoosmotic stress in the presence of either 60mm K+ or 1mm quinine HCl or at 27°C resulted in no change inV m compared with a 20-mV increase inV m without the added agents or at 37°C. We conclude that mouse hepatocytes maintain their volume anda K i in response to anisosmotic medium; however,V m behaves as an osmometer under these conditions. Also, increases inV m by hypoosmotic stress were abolished by conditions or agents that inhibit K+ conductance.  相似文献   

15.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 16.
    A humoral ouabain-like plasma factor has been observed in patients with essential hypertension (EHT). In the present study, we hypothesized that this humoral factor might be responsible for the elevated cytosolic free calcium concentrations [Ca2+]i seen in these patients. Patients with mild to moderate EHT and their normotensive first degree blood relatives (NTBR) participated in the study. Platelet Na+, K+-ATPase activity was assayed in EHT patients and their NT first-degree relatives. To confirm the ouabain-like activity in plasma from EHT patients, control platelets were incubated with EHT and NTBR plasma and their Na+, K+-ATPase activity was measured. In addition, the effect of EHT plasma on platelet45Ca-uptake was studied. Thein vitro effects of ouabain (10 ΜM) on (i)45Ca-uptake and (ii) [Ca2+]i response in control platelets were also observed. A decreased Na+K+-ATPase activity (P< 0.05) was observed in platelet membranes from EHT patients. Incubation of control platelets with EHT plasma decreased their Na+, K+-ATPase activity (P< 0.01) and increased their45Ca-uptake (P< 0.05). C-18 Sep-Pak filtered hypertensive plasma extracts (containing the ouabain-like fraction) also decreased Na+, K+-ATPase activity (P< 001) in control platelet membranes.In vitro incubation of control platelets with ouabain increased45Ca-uptake (P< 005) and [Ca2+]i response (P< 0.05) in these platelets. Thus it appears that an ouabain-like factor in the EHT plasma may contribute to the elevated platelet [Ca2+]i observed in EHT patients.  相似文献   

    17.
    Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

    18.
    Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

    19.
    A preliminary study was conducted using the stable isotope 13C to pulse label the cover crop phacelia (Phacelia tanacetifolia) to examine its decomposition in soil, under field conditions. Plants were grown, in pots, in the greenhouse and after four weeks of growth were labelled with 13CO2 six times, at 1–2 week intervals. A single chamber was placed over the pots, and 13CO2 was generated, inside the chamber, by injecting lactic acid into sodium carbonate (99 atom % 13C). For calculating the quantity of Na2CO3 required, a target enrichment of 5 atom% 13C within the shoots of plants, assuming no respiration losses, was used. When harvested, at flowering, the mean enrichment of the shoot material was 3.0466 atom% 13C, or 1.9654 atom% excess 13C. To assess uniformity of labelling within plants, the shoot of a single plant was divided into leaves and stem from three sections of equal length. Ninety-three percent of this plant's dry matter had a 13C enrichment within 20 % of the weighted mean. At a field site with sandy soil, 13C labelled shoot and root material were combined and mixed with soil (0–15 cm). The soil was sampled 16 and 179 days later to determine the recovery of the added excess 13C in soil total C. The recoveries in soil (0–30 cm) were, respectively, 78 and 40 % at 16 and 179 days; there was appreciable variation associated with the recovery data from day 16, much less so at day 179. Methodological procedures for (i) enhancing the uniformity of labelling with 13C within plants, and (ii) minimising variability in the recovery of 13C from soil are suggested. ei]R Merckx  相似文献   

    20.
    Chloroflexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as electron source. The cultures were subjected to long term labelling experments with 13C-labelled acetate or alanine in the presence of sodium fluoroacetate. The presence of fluoroacetate caused the cells to accumulate large amounts of polyglucose which was hydrolysed and analysed by NMR. The labelling patterns of glucose were symmetric and in agreement with carbohydrate synthesis from acetate and CO2 via pyruvate synthase. The content of carbon derived from added acetate was highest in C2 and C5 of glucose, at least 20% higher than in C1 and C6. About one third of the glucose carbon was derived from added acetate, the rest being from CO2. Contrary to expectations, in glucose formed in the presence of C1-labelled acetate C1 and C6 contained more label than C2 and C5, and with C2-labelled acetate as the tracer glucose was mainly labelled in C2 and C5. Labelled CO2 was formed from acetate labelled at either position. The labelling data indicate a new metabolic pathway in C. aurantiacus. It is suggested that the cells form C1-labelled acetyl-CoA from C2-labelled acetyl-CoA and vice versa by a cyclic mechanism involving concomitant CO2 fixation and that this cycle is the part of the autotrophic CO2 fixation pathways in C. aurantiacus in which acetyl-CoA is formed from CO2.The polyglucose of C. aurantiacus appears to have predominantly (1–4)-linked structure with about 10% (1–6)-linkages as revealed by 13C-NMR.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号