首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
1. Etiolated seedlings of alfalfa and cucumber evolved n-hexanal from linoleic acid and cis-3-hexenal and trans-2-hexenal from linolenic acid when they were homogenized.

2. The activities for n-hexanal formation from linoleic acid, lipoxygenase and hydro-peroxide lyase were maximum in dry seeds and 1~2 day-old etiolated seedlings of alfalfa, and in 6~7 day-old etiolated seedlings of cucumber.

3. n-Hexanal was produced from linoleic acid and 13-hydroperoxylinoleic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. cis-3-Hexenal and trans-2-hexenal were produced from linolenic acid and 13-hydroperoxylinolenic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. But these extracts, particulariy cucumber one, showed a high isomerizing activity from cis-3-hexenal to trans-2-hexenal.

4. When the C8-aldehydes were produced from linoleic acid and linolenic acid by the crude extracts, formation of hydroperoxides of these C18-fatty acids was observed.

5. When 9-hydroperoxylinoleic acid was used as a substrate, trans-2-nonenal was produced by the cucumber homogenate but not by the alfalfa homogenate.

6. As the enzymes concerned with C6-aldehyde formation, lipoxygenase was partially purified from alfalfa and cucumber seedlings and hydroperoxide lyase, from cucumber seedlings. Lipoxygenase was found in a soluble fraction, but hydroperoxide lyase was in a membrane bound form. Alfalfa lipoxygenase catalyzed formation of 9- and 13-hydroperoxylinoleic acid (35: 65) from linoleic acid and cucumber one, mainly 13-hydroperoxylinoleic acid formation. Alfalfa hydroperoxide lyase catalyzed n-hexanal formation from 13-hydroperoxylinoleic acid, but cucumber one catalyzed formation of n-hexanal and trans-2-nonenal from 13- and 9-hydroperoxylinoleic acid, respectively.

7. From the above results, the biosynthetic pathway for C6-aldehyde formation in etiolated alfalfa and cucumber seedlings is established that C6-aldehydes (n-hexanal, cis-3-hexenal and trans-2-hexenal) are produced from linoleic acid and linolenic acid via their 13-hydroperoxides by lipoxygenase and hydroperoxide lyase.  相似文献   

2.
Developmental change in c(6)-aldehyde formation by soybean leaves   总被引:3,自引:1,他引:2       下载免费PDF全文
Damage to plant leaves by wounding or freezing induces the production of large amounts of C6-compounds. However, the control of formation of these compounds in leaves is not yet clear. In the current study, C6-aldehyde formation by freeze-injured soybean leaves of different ages (based on the leaf positions on the plant) at stage R1 of plant development was investigated. The results demonstrate that C6-aldehyde formation by the soybean (Glycine max L.) leaves changes as leaves develop. Younger leaves produce high levels of C6-aldehydes, mainly composed of hexanal. Subsequently, as the leaves develop, the level of C6-aldehyde formation decreases markedly, followed by an increase with a large shift from hexanal to hexenals. Lipoxygenase and lipolytic acyl hydrolase activity was reduced, and, in contrast, hydroperoxide lyase activity increased. There was little difference in lipoxygenase substrate specificity for linoleic acid and linolenic acid, but hydroperoxide lyase preferentially utilized 13-hydroperoxy-9,11,15-octadecatrienoic acid. In the in vivo lipoxygenase substrate pool, the linoleic acid level declined and the relative level of linolenic acid increased. The change in ratios of linolenic acid to linoleic acid showed a similar trend during soybean leaf development to that of hexenals to hexanal.  相似文献   

3.
Isolated tea chloroplasts utilized linoleic acid, linolenicacid and their 13-hydroperoxides as substrates for volatileC6-aldehyde formation. Optimal pH values for oxygen uptake,hydroperoxide lyase and the overall reaction from C18-fattyacids to C6-aldehydes were 6.3, 7.0 and 6.3, respectively. Methyllinoleate, linoleyl alcohol and -linolenic acid were poor substratesfor the overall reaction, but linoleic and linolenic acids weregood substrates. The 13-hydroperoxides of the above fatty acidsand alcohol also showed substrate specificity similar to thatof fatty acids. Oxygen uptakes (relative Vmax) with methyl linoleate,linoleyl alcohol, linolenic acid, -linolenic acid and arachidonicacid were comparable to or higher than that with linoleic acid.In winter leaves, the activity for C6-aldehyde formation fromC18-fatty acids was raduced to almost zero. This was due tothe reduction in oxygenation. The findings presented here provideevidence for the involvement of lipoxygenase and hydroperoxidelyase in C6-aldehyde formation in isolated chloroplasts. (Received July 11, 1981; Accepted November 5, 1981)  相似文献   

4.
The substrate specificity of enzyme system producing C6-aldehyde in Thea chloroplasts was clarified with an entire series of synthesized positional isomers, in which the position of cis-1, cis-4-pentadiene system varies from C-3 to C-13 in C18 fatty acid and geometrical isomers of linoleic acid. The structural requirement for the substrate of enzyme system producing C6-aldehyde is the presence of cis-1, cis-4-pentadiene system between ω-6 and ω-10.  相似文献   

5.
The enzyme activity responsible for volatile C6-aldehyde formation was accompanied by lipoxygenase and hydroperoxide lyase in the green leaves of 28 plant species tested, but the level of each enzyme's activity varied. Lipoxygenase activity rather than hydroperoxide lyase activity appears to affect the overall C6-aldehyde formation. There was a positive correlation (r = 0.712) between hydroperoxide lyase activity and the chlorophyll content of the green leaves; no correlation was found between lipoxygenase activity and chlorophyll content.  相似文献   

6.
Linolenic acid-[1-14C] was converted to 12-oxo-trans-10-dodecenoic acid, via 12-oxo-cis-9-dodecenoic acid by incubation with chloroplasts of Thea sinensis leaves. Thus, it was confirmed that linolenic acid is split into a C12-oxo-acid, 12-oxo-trans-10-dodecenoic acid, and a C6-aldehyde, trans-2-hexenal, leaf aldehyde, by an enzyme system in chloroplasts of tea leaves.  相似文献   

7.
The fatty acid composition of the fruit oils or seed oils of Pittosporaceae (eight genera, 10 species), Araliaceae (two species), Simarubaceae (three species), and of one umbelliferous and one rutaceous species were determined by gas chromatography, argentation TLC and ozonolysis. In the Pittosporaceae, in which the major C18 fatty acid of all species was either oleic acid (18:1, 9c) or linoleic acid (18:2, 9c, 12c), large amounts of C20 and C22 fatty acids seem to occur regularly. Petroselinic (18:1, 6c) and tariric (18:1, 6a) acids were absent. However, petroselinic acid was the major fatty acid in the Araliaceae and Umbelliferae. In these two families only small amounts of C20 and C22 acids were detected and tariric acid was absent. The Rutales contained relatively high amounts of trans-octadecenoic acids (18:1, 9t). Tariric acid was the major fatty acid in the two species of Picramnia (Simarubraceae), which also contained small amounts of petroselinic acid. The major fatty acids in Ailanthus glandulosa (Simarubaceae) and Phellodendron amurense (Rutaceae) were linoleic or linolenic acid (18:3, 9c, 12c, 15c); these species contained neither tariric nor petroselinic acid and the levels of C20 and C22 fatty acids were low. The appearance of schizogenous resin canals and polyacetylenes and the absence of iridoids and petroselinic acid allows the Pittosporaceae to be separated from the Rutales and Araliales and to be placed in an independent order, the Pittosporales. Arguments for a rather close relationship of the Pittosporales to the Araliales and Cornales (including the Escalloniaceae) are presented.  相似文献   

8.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

9.
C6-aldehydes are synthesized via lipoxygenase/hydroperoxide lyase action on polyunsaturated fatty acid (PUFA) substrates in plant leaves. The source pools and subcellular location of the processes are unknown. A close relationship is found between the composition of PUFA and the composition of C6-aldehydes. In the current study, this relationship was tested using the Arabidopsis PUFA mutant lines act1, fad2, fad3, fad5, fad6, and fad7. The results indicate that C6-aldehyde formation is influenced by the alteration of C18 PUFA levels. Mutants act1 and fad5, which are deficient in C16 unsaturated fatty acids, had wild-type levels of C6-aldehyde production. Mutants deficient in the chloroplast hexadecenoic acid/oleic acid desaturase (fad6) or hexadecadienoic acid/linoleic acid desaturase (fad7) had altered C6-aldehyde formation in a pattern similar to the changes in the PUFA. Mutations that impair phosphatidylcholine desaturase activity, such as fad2 and fad3, however, resulted in increased E-2-hexenal formation. The enzymes involved in C6-aldehyde production were partially characterized, including measurement of pH optima. The differences in C6-aldehyde formation among the fatty acid mutants of Arabidopsis appeared not to result from alteration of lipoxygenase/hydroperoxide lyase pathway enzymes. Investigation of the fatty acid composition in leaf phospholipids, glycolipids, and neutral lipids and analysis of the fatty acid composition of chloroplast and extrachloroplast lipids indicate that chloroplasts and glycolipids of chloroplasts may be the source or major source of C6-aldehyde formation in Arabidopsis leaves.  相似文献   

10.
The aim of this study was to determine the temporal release of fatty acids and sugars from corn and cucumber seeds during the early stages of seed germination in order to establish whether sugars found in exudate can prevent exudate fatty acid degradation by Enterobacter cloacae. Both saturated (long-chain saturated fatty acids [LCSFA]) and unsaturated (long-chain unsaturated fatty acids [LCUFA]) fatty acids were detected in corn and cucumber seed exudates within 15 min after seed sowing. LCSFA and LCUFA were released at a rate of 26.1 and 6.44 ng/min/seed by corn and cucumber seeds, respectively. The unsaturated portion of the total fatty acid pool from both plant species contained primarily oleic and linoleic acids, and these fatty acids were released at a combined rate of 6.6 and 0.67 ng/min/seed from corn and cucumber, respectively. In the absence of seed exudate sugars, E. cloacae degraded linoleic acid at rates of 29 to 39 ng/min, exceeding the rate of total fatty acid release from seeds. Sugars constituted a significant percentage of corn seed exudate, accounting for 41% of the total dry seed weight. Only 5% of cucumber seed exudate was comprised of sugars. Glucose, fructose, and sucrose were the most abundant sugars present in seed exudate from both plant species. Corn seeds released a total of 137 microg/seed of these three sugars within 30 min of sowing, whereas cucumber seeds released 0.83 microg/seed within the same time frame. Levels of glucose, fructose, and sucrose found in corn seed exudate (90 to 342 microg) reduced the rate of linoleic acid degradation by E. cloacae to 7.5 to 8.8 ng/min in the presence of either sugar, leaving sufficient concentrations of linoleic acid to activate Pythium ultimum sporangia Our results demonstrate that elevated levels of sugars in the corn spermosphere can prevent the degradation of LCUFA by E. cloacae, leading to its failure to suppress P. ultimum sporangial activation, germination, and subsequent disease development.  相似文献   

11.
12.
Leaf alcohol (cis-3-hexenol) and leaf aldehyde (trans-2-hexenal)are responsible for the green odor in leaves and fruits. cis-3-Hexenal,a precursor of cis-3-hexenol and trans-2-hexenal, was producedfrom linolenic acid by a homogenate of Farfugium japonicum (Japanesesilver) leaves. n-Hexanal was produced from linoleic acid bya homogenate of the leaves. The enzyme system catalyzing formationof C6-aldehydes from linolenic and linoleic acids was localizedin chloroplast lamellae, and required oxygen for reaction. C18-unsaturatedfatty acids such as linolenic acid, linoleic acid and -linolenicacid, which have carboxyl groups and cis-1, cis-4-pentadienesystems including a double bond at C-12, acted as substrates,and C6-aldehydes (cis-3-hexenal or n-hexanal), but not C9-aldehydes,were produced from them. The properties of the enzyme systemin chloroplasts were as follows: optimal pH 7.0; stable at pH5 to 7; thermolabile and no activity at 50?C. These propertieswere very similar to those of tea chloroplasts. The enzyme systemcould be solubilized from chloroplasts by 2% Triton X-100, butwas very unstable in solubilized form. (Received July 9, 1976; )  相似文献   

13.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formation of [32-P] cyclic GMP from α-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-γ-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to the soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cyclooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguaiaretic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

14.
The course of biosynthesis of fatty acids in the seeds of winter rape (Brassica napus L. ssp.oleifera, f.biennis cv. T?ebí?ská) was investigated. After the termination of flowering seed samples were taken at five intervals, the seeds were divided into 4 fractions according to size, and their weight, water content, oil content and fatty acid composition were determined. The oil content was found to increase in all size categories with time, with the exception of a minute drop when complete maturity is reached. Larger seeds contained more oil. The fatty acid composition changes with time in the individual size fractions almost continuously. The same holds for differences between seed sizes of the same sample. The main change in oil composition consists in the decrease of C18 acids in favour of C22 acids. Greatest decrements during maturation were found with oleic acid, less with linoleic acid. In absolute amounts the quantity of all synthesized acids rises, the greatest rise being observed with C22 acids (i.e. predominantly erucic acid). It follows from the mean rates of synthesis of the individual groups (C16, C18, C20, C22) of fatty acids that the fraction of C22 rate of synthesis increases, while that of the C18 acids decreases with the same speed. The results indicate that the fatty acid synthesis is most intense during the second half of seed maturation, the main role being played by accelerating the synthesis of higher acids, especially of erucic acid.  相似文献   

15.
Kidney bean plants (Phaseolus vulgaris) were found to have thecapability to produce C6-aldehydes (hexanal and hexenals) fromlinoleic and linolenic acids. The various organs tested hadlipoxygenase and hydroperoxide lyase activities responsiblefor the C6-aldehyde formation. Young leaves showed relativelyhigh activities for C6-aldehyde formation. However, the activitiesof the leaves decreased gradually with leaf expansion. Seedlingsand seeds containing cotyledons showed low activities for C6-aldehydeformation, because of the occurrence of an inhibitory factorin the cotyledons. The substrate specificity of the enzymeswas essentially the same among the various developmental stagesof leaves tested. (Received February 5, 1982; Accepted March 19, 1982)  相似文献   

16.
Cephalosporium acremonium was cultivated in fermentation medium containing sucrose or methyl oleate as a carbon source for cephalosporin C production. The level of antibiotic production was 48 g of cephalosporin C per liter under optimum conditions when methyl oleate was used. The C18:1 (oleic acid) methyl ester appeared to be utilized faster than the C18:2 (linoleic acid) methyl ester in fermentation broth. Physiological characteristics of C. acremonium were investigated by determining the fatty acid composition of the total cellular free lipid. Significant changes in cellular fatty acid composition occurred during inoculum cultivation and fermentation. The percentage of C18:1 increased from 19.1 to 38.5%, but the percentage of C18:2 decreased from 56.7 to 36.1%, and there was an increase in pH during inoculum cultivation. The cellular fatty acid composition of C. acremonium grown in fermentation medium containing methyl oleate (methyl oleate medium) was significantly different from that in fermentation medium containing sucrose (sucrose medium). The major fatty acids detected were C16:0 (palmitic acid), C18:1, and C18:2. In methyl oleate medium, the ratio of C18:1 to C18:2 increased from 0.34 to 1.37, while the cell morphology changed from hyphae to arthrospores and conidia. In contrast, in sucrose medium, the ratio of C18:1 to C18:2 decreased from 0.70 to 0.43, and most of the cells remained hyphal at the end of fermentation. We observed that hyphae contained a higher proportion of C18:2 but arthrospores and conidia contained a higher proportion of C18:1.  相似文献   

17.
During manufacture of black tea, lipids are degraded to volatile constituents. Cis-3-hexenal was present in appreciable amounts in the various parts of fresh shoots and decreased in the second leaves during manufacture. There was a simultaneous increase in trans-2-hexenal. Linalol and methyl salicylate also increased appreciably during rolling and fermentation. Most of the volatiles were lost during the firing process. The above trend was borne out by the ‘potential’ of the leaves for the production of volatiles as indicated by the increased amounts of volatiles produced by homogenizing the tissue in water against controls homogenized in 0.1 N acid. The C6-aldehydes present in the headspace of withered shoots increased significantly following mechanical damage. The major fatty acids of the lipids in the various parts of the shoots were linolenic, linoleic, palmitic, oleic and stearic acids. The ratio of linoleic to linolenic acid in the stems was much higher than that of the leaves or buds and this was reflected in its higher 'potential for formation of hexanal. During withering and rolling of the second leaves, the unsaturated fatty acids showed substantial losses compared with the saturated acids. It is suggested that the enzymic breakdown of membrane lipids initiate the formation of volatile carbonyl compounds which are partly responsible for the flavour of black tea.  相似文献   

18.
《Phytochemistry》1987,26(5):1273-1277
An inhibitor of lipoxygenase, acetonylacetone bis-phenylhydrazone (AABPH), markedly reduced the formation of the major volatile C6 products isolated by reduced pressure steam distillation-hexane extraction of wheat plant homogenates. The compound was active on plant extracts containing lipoxygenase activity and completely inhibited activity at a concentration of 2.5 μM. Two other lipoxygenase inhibitors, phenidone and nordihydroguaiaretic acid, were not as active as AABPH. Linoleate added prior to homogenization increased the quantities of certain lipoxygenase derived volatiles, whereas heat treatment caused a marked reduction in the production of all volatile compounds.  相似文献   

19.
When tea leaves were homogenized and incubated, the volatileC6-compounds hexanal, cis-3-hexenal, cis-3-hexenol and trans-2-hexenalwere formed much more by summer leaves than by winter leavesof tea plants (Camellia sinensis). The enzymes lipolytic acylhydrolase (LAH), lipoxygenase, fatty acid hydroperoxide lyase(HPO lyase) and alcohol dehydrogenase (ADH) and an isomerizationfactor were responsible for the sequential reactions of C6-compoundformation from linoleic and linolenic acids in tea leaf lipids,and there were seasonal changes in their activities. The tealeaf enzymes were of 3 types: LAH and lipoxygenase, which hadhigh activities in summer leaves and low activities in winterleaves; ADH, which had low activity in summer leaves and highactivity in winter ones; and HPO lyase and the isomerizationfactor, which did not seem to have any effect on the rate ofC6-compound formation throughout the year. Changes in enzymeactivities were induced by shifts in the environmental air temperaturerather than by the age of the leaves. The combined activitiesof these enzymes determined the amounts and compositions ofthe volatile C6-compounds formed, which are the factors thatcontrol the quality of the raw leaves processed for green tea. (Received October 6, 1983; Accepted December 20, 1983)  相似文献   

20.
Activation of the C2 to C19 Monocarboxylic Acids by Pseudomonas   总被引:2,自引:2,他引:0       下载免费PDF全文
Cell extracts of pseudomonads grown on hexadecanoic acid contained C11 to C19 acyl thiokinase, C4 to C14 acyl thiokinase, C2 to C6 acyl thiokinase, acetyl thiokinase, and acetokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号