首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amounts of sRNA and rRNA in the muscle of hind limbs and liver were measured in the rats fed on protein free diet for 28 days.

The amounts of sRNA and rRNA in both tissues were decreased exponentially by protein deprivation, and in the muscle a daily fractional loss of sRNA was clearly less than that of rRNA. Thus during the experimental period the amount of sRNA fell unparallel with that of rRNA, This result suggests that synthesis and degradation of both RNAs may be separately controlled by diet.

sRNA content in muscle and liver of rats fed on the 20% casein containing diet were about 27% and 14% of total RNA (sRNA plus rRNA), respectively.  相似文献   

2.
Quantitative changes in fractional catabolic and synthetic rates of the myosin-actin pool in rat muscle under starvation and refeeding, during growth or after treatment with hydrocortisone were studied by estimating urinary excretion of Nτ-methylhistidine (3-methyl- histidine; Me-His).

Following deprivation of food, urinary Me-His output increased from 0.35 mg/day to 0.45 mg/day during first 2 day in spite of decreasing body Me-His pool. This high rate of Me-His excretion was maintained for the following 4 days of starvation and then decreased. When rats were refed a 20% casein diet after 10 days of starvation, Me-His excretion continued to decrease even after 3 days of refeeding. On the fifth day of refeeding, it began to rise progressively. During starvation, fractional catabolic rate of myosin-actin was about 3.7 %/day in comparison with 2.6 %/day of fed rats. After refeeding, the fractional catabolic rate decreased rapidly to a minimum value of 1.7 %/day on the third day. After that, it reached to a value of 2.6 %/day of fed rats. On the other hand, fractional synthetic rate of myosin-actin dropped immediately after fasting and the low rate of about 0.4 %/day was maintained during starvation period. Fractional synthetic rate recovered quickly after refeeding.

Urinary output of nitrogen and creatinine rose quickly on the first day after administration of hydrocortisone and on the second day it fell to their normal value. While Me-His excretion increased after injection of hydrocortisone up to 0.52 mg/day on the second day and this high excretion rate remained until the following day. From these results, it was shown that administration of hydrocortisone to rats enhances catabolism and reduces synthesis of myosin-actin. The results also show that the effect of this hormone on myofibrillar protein catabolism appears to last longer than its effect on nitrogen metabolism in the whole body judged from urinary nitrogen output.

Fractional rates of catabolism and synthesis of rat myosin-actin were 3.3 %/day (half- life of 21 days) and 7.2%/day, respectively, at the growth stage of 129 g body weight. These rates were 2.3 %/day (half-life of 30 days) and 2.8 %/day, respectively, at the mature stage of 363 g body weight.

Under the dietary conditions in this experiment, fractional synthetic rate changed far more dramatically than catabolic rate. This suggests that mass of muscle protein is primarily regulated by the rate of synthesis, although the rate of catabolism should not be neglected.  相似文献   

3.
The turnover of prothrombin and of factor X was investigated in rabbits fed on a 1%-cholesterol-supplemented or a standard diet by studying the evolution of radioactivity in blood and in plasma from these animals after the intravenous injection of either 125I-rabbit factor X or 125I-bovine prothrombin. For factor X, half-lives and fractional pool sizes were similar for the two groups of rabbits in the extravascular, intravascular and plasma compartments. However, the equivalent plasma fractional pool size for the two groups of rabbits was only 73% of that in the intravascular compartment. The fractional catabolic rate for the hypercholesterolaemic rabbits [0.064 +/- 0.007 (of the intravascular pool)/h] was not significantly different from that in the rabbits fed on the standard diet (0.074 +/- 0.008/h). However, the absolute catabolic rate, and therefore the rate of synthesis, was significantly higher (1.261 +/- 0.141 mg/day per kg body wt. of rabbit) in the rabbits fed on the cholesterol-supplemented than that in the rabbits fed on the standard diet (0.705 +/- 0.019 mg/day per kg). The prothrombin half-lives and fractional pool sizes were similar for the two groups of rabbits in the extravascular and the intravascular compartments. The fractional catabolic rate for the hypercholesterolaemic rabbits [0.041 +/- 0.003 (of the plasma pool)/h] was not significantly different from that in the rabbits fed on the standard diet (0.035 +/- 0.003/h). However, the absolute catabolic rate and therefore the rate of prothrombin synthesis was significantly higher (3.96 +/- 0.48 mg/day per kg body wt.) in the rabbits fed on the cholesterol-supplemented than that in the rabbits fed on the standard diet (2.24 +/- 0.12 mg/day per kg).  相似文献   

4.
We hypothesized that protein source in the nutritionally adequate AIN-93G diets fed during gestation, lactation, and weaning influences food intake (FI) regulation in male offspring of Wistar rats. Pregnant rats were fed the recommended casein-based (C) or soy protein-based (S) diet during gestation (experiment 1) or during gestation and lactation (experiment 2). Pups (n = 12 per group) weaned to C or S diets were followed for 9 wk (experiment 1) or 14 wk (experiment 2). At termination, body weight was 5.4% and 9.4% higher, respectively, in offspring of dams fed the S diet. Altered FI regulation was shown by failure of devazepide (a CCK-A receptor blocker) to block FI reduction after protein preloads in offspring of S diet-fed dams, whereas it had a strong effect on offspring of C diet-fed dams (P < 0.005). Similarly, naloxone (an opioid receptor blocker) blocked FI reduction more after casein than after soy protein preloads (P < 0.01). In experiment 2, offspring of dams fed the S diet had higher hypothalamic gene expression of agouti related protein at weaning (P < 0.05), and higher FI was found throughout postweaning (P < 0.0001). FI reduction after protein preloads at week 7 and after glucose preloads at week 13 was greater in offspring of C diet-fed dams (P < 0.05). Plasma insulin at weaning and insulin, ghrelin, and glucagon-like peptide-1 at week 15 were higher in offspring of S diet-fed dams (all P < 0.05). In conclusion, nutritionally complete C and S diets consumed during gestation and lactation differ in their effects on body weight and FI regulation in the offspring. Extending the diet from gestation alone to throughout gestation and lactation exaggerated the adverse effects of the S diet. However, the diet consumed postweaning had little effect on the outcome.  相似文献   

5.
Although protein turnover in skeletal muscle is increased in hyperthyroidism and decreased in hypothyroidism, a deficient protein intake tends to increase serum T3 (tri-iodothyronine) while decreasing muscle protein turnover. To determine whether this diet-induced decrease in protein turnover can occur independent of thyroid status, we have examined muscle protein turnover and nitrogen conservation in hyperthyroid rats fed on a protein-free diet. After inducing hyperthyroidism by giving 20 micrograms of T3/100g body wt. daily for 7 days, groups of euthyroid and hyperthyroid animals were divided into subgroups fed on basal and protein-free diets. Muscle protein turnover was measured by N tau-methylhistidine excretion and [14C]tyrosine infusion. Urinary nitrogen output of euthyroid and hyperthyroid animals fed on the protein-free diet was also measured. Although hyperthyroidism increased the baseline rates of muscle protein synthesis and degradation, it did not prevent a decrease in these values in response to protein depletion. Furthermore, hyperthyroid rats showed greatly decreased nitrogen excretion in response to the protein-free diet, although not to values for euthyroid rats. These findings suggest that protein depletion made the experimental animals less responsive to the protein-catabolic effects of T3.  相似文献   

6.
Urinary excretion of acid soluble peptide (ASP)-form amino acids was lower in rats deprived of protein than in rats fed on a 20% casein or 20% gluten diet. However, the amino acid pattern of urinary ASP was similar among each of the three dietary groups, suggesting that urinary ASP is mainly endogenous origin under these nutritional conditions.

College women who were given a meat-free protein diet for 3 days after 10 days’ protein deprivation excreted 1.4 times the amount of ASP-form amino acids during protein deprivation.

The rate of urinary excretion of ASP-form amino acids in the state of protein deprivation was proportional to the metabolic body size of organisms as far as rats and women were concerned.

Streptozotocin-induced diabetic rats excreted two times the amount of ASP-form amino acids compared with normal rats. This suggests that endogenous protein catabolism doubled in diabetic rats.

When labelled urinary ASP was injected into rats, approximately 40% of the label was recovered as urinary ASP within 24 hr. This excretion rate was far higher than that after the injection of free leucine.

The rate of urinary excretion of ASP-form amino acids correlated with that of Nτ-methylhistidine in rats.

These results favor the hypothesis that urinary ASP reflects the catabolism of body proteins.  相似文献   

7.
The fractional rates of synthesis and breakdown of myosin and actin in skeletal muscle of younn adult male rats were measured during 2 weeks of ad libitum feeding of a protein-free diet, and 8 days of refeeding with an adequate protein diet. Daily urinary excretion of Nτ-Methylhistidine (3-methylhistidine) by the Nτ-methylhistidine pool of the body gave the fractional breakdown rate of the myosin-actin pool. The fractional synthesis rate of the myosin-actin pool was calculated from the fractional breakdown rate and the size of Nτ-methylhistidine pool in the body. The feeding of the protein-free diet resulted in a decreased in body weight and a decrease in daily urinary excretion of Nτ-methylhistidine. Refeeding caused an increase in body weight and a progressive increase in daily urinary excretion of Nτ-methylhistidine. At the start of the experiment, the fractional breakdown rate of the myosin-actin pool was 4% per day and with prolonged protein depletion, the rate decreased to 1.25% per day. The fractional synthesis rate also decreased more rapidly than the breakdown rate. On refeeding for one day with an adequate protein diet, the fractional synthesis rate increased from 0.75 to 5.75% per day. Accumulation of skeletal muscle protein by refeeding was accompanied by a difference between the faster rate of synthesis and slower rate of breakdown even though the fractional breakdown rate increased during the rehabilitation period.  相似文献   

8.
The impact of chronic excessive energy intake on protein metabolism is still controversial. Male Wistar rats were fed ad libitum during 5 weeks with either a high‐fat high‐sucrose diet (HF: n = 9) containing 45% of total energy as lipids (protein 14%; carbohydrate 40% with 83.5% sucrose) or a standard diet (controls: n = 10). Energy intake and body weight were recorded. At the end of the experiment, we measured body composition, metabolic parameters (plasma amino acid, lipid, insulin, and glucose levels), inflammatory parameter (plasma α2‐macroglobulin), oxidative stress parameters (antioxidant enzyme activities, lipoperoxidation (LPO), protein carbonyl content in liver and muscle), and in vivo fed–state fractional protein synthesis rates (FSRs) in muscle and liver. Energy intake was significantly higher in HF compared with control rats (+28%). There were significant increases in body weight (+8%), body fat (+21%), renal (+41%), and epidydimal (+28%) fat pads in HF compared with control rats. No effect was observed in other tissue weights (liver, muscle, spleen, kidneys, intestine). Liver and muscle FSRs, plasma levels of lipids, glucose, insulin and α2‐macroglobulin, soleus and liver glutathione reductase and peroxidase acitivities, MnSOD activity, LPO, and protein carbonyl content were not altered by the HF diet. Only soleus muscle and liver Cu/ZnSOD activity and soleus muscle catalase activities were reduced in HF rats compared with control rats. Thus, chronic excessive energy intake and increased adiposity, in the absence of other metabolic alterations, do not stimulate fed‐state tissue protein synthesis rates.  相似文献   

9.

Background

We investigated the effects of three weeks of renutrition with a normal protein diet on oxidant/antioxidant status in malnourished rats using biochemistry and histology.

Methods

Eighteen young Wistar rats were divided into three groups: control group was fed on a normal protein diet; malnourished group was fed on low protein diet and renourished group was fed on low protein diet followed by a normal protein diet. Serum albumin was evaluated. Malondialdehyde, protein carbonyl, superoxide dismutase and catalase levels were determined in the intestine, muscle and liver. Intestinal and hepatic damage were assessed by histological examination.

Results

Protein malnutrition resulted in a significant decrease of body weight, albumin level, villus length, intraepithelial lymphocytes counts (IELC) and superoxide dismutase level (liver and muscle). However, catalase activity increased significantly in muscle and gut but there was no difference in liver. In all organs, malondialdehyde and protein carbonyl content of malnourished group showed a significant increase. Interestingly, a normal protein diet for three weeks resulted in a return to normal levels of superoxide dismutase, albumin, malondialdehyde and protein carbonyl in all organs. Catalase activity decreased in the muscle and gut and exhibited no significant difference in the liver. The renutrition diet enhanced also the recovery of intestinal epithelium by increasing villus length. Hepatic damage of rats fed normal protein diet was markedly reduced (macrovesicular steatosis decreased by 45%).

Conclusion

The normal protein diet could improve the oxidant/antioxidant imbalance and organ damage induced by protein malnutrition.
  相似文献   

10.
The metabolic fate of the carbon skeleton of l-serine-U-14C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (PC%) at 410 kcal of metabolizable energy.

The incorporation of 14C into body protein at 12 hr after the injection of serine-14C was about 49% of the injected dose in rats fed the 10 or 15 PC % diet, though the value was reduced in rats fed lower and higher protein diets. The 14CO2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14C incorporation into body protein. Urinary excretion of 14C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum.

In contrast to the case of rats, the incorporation of 14C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group.

The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets.

These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets.  相似文献   

11.
Day-old male chickens were fed ad libitum isoenergetic diets containing 20% crude protein but differing in their lysine content (from 6.5 up to 11.3 g/kg). At 3 weeks of age, protein fractional synthesis rates in the pectoralis major muscle were determined using a large dose injection of 120 mumol per kg body weight of L-[4-3H] phenylalanine. Protein gain in the pectoralis major was measured between 19 and 23 days of age. Protein breakdown was obtained by calculating the difference between protein synthesis and deposition. Weight gain varied curvilinearly with dietary lysine intake and was maximum for 11.3 g lysine/kg of diet. In birds fed an adequate lysine intake (10.1-11.3 g/kg) protein fractional synthesis and breakdown rates were 23.6-25.9 and 17.8-19.8%/d respectively. Increasing lysine supplementation in the diet resulted in an impairment of protein fractional breakdown rates. By contrast, protein fractional synthesis rates remained unchanged owing mainly to an improvement in the synthesis efficiency (kRNA), until birds were fed an adequate lysine intake. These data suggest that the growth rate reduction of chickens fed lysine deficient diets was due to alterations in both rates of protein synthesis and breakdown in skeletal muscle. A maximum protein deposition is achieved when kRNA was optimal, ie for a dietary lysine content of about 9 g/kg, a value close to the requirement.  相似文献   

12.
The metabolic fate of the carbon skeleton of l-(U-14C)-histidine has been investigated in growing rats fed diets containing different percentages of protein calories (0, 5, 10, 15 and 30 PC%) at 410 kcal of metabolizable energy per 100 g diet.

The incorporation of 14C into body protein at 12 hr after injection of 14C-histidine was about 70% of the dose in rats fed 0 to 10 PC% diets, though the value was reduced in rats fed higher PC% diets. The expired 14CO2 production was depressed in the low protein groups, and it showed an inverse pattern to that of 14C incorporation into body protein. Urinary excretion of 14C was about 20% of the dose in all dietary groups. The activities of hepatic histidase, urocanase and histidine-pyruvate aminotransferase were increased in the 30 PC% group.

These results indicate that the metabolic response of histidine to dietary protein changes around 10 PC%, where growth rate and body protein retention reached approximate plateaus.

The nutritional significance of the metabolism of histidine has been discussed and compared with that of leucine, alanine and serine reported previously.  相似文献   

13.
Summary. The purpose of this study was to determine whether the γ-aminobutyric acid (GABA) affects the rate of brain protein synthesis in male rats. Two experiments were done on five or three groups of young rats (5 wk) given the diets containing 20% casein administrated 0 mg, 25 mg, 50 mg, 100 mg or 200 mg/100 g body weight GABA dissolved in saline by oral gavage for 1 day (d) (Experiment 1), and given the diets contained 0%, 0.25% or 0.5% GABA added to the 20% casein diet (Experiment 2) for 10 d. The plasma concentration of growth hormone (GH) was the highest in rats administrated 50 mg and 100 mg/100 g body weight GABA. The concentration of serum GABA increased significantly with the supplementation groups. The fractional (Ks) rates of protein synthesis in brain regions, liver and gastrocnemius muscle increased significantly with the 20% casein + 0.25% GABA diet and still more 20% casein + 0.5% GABA compared with the 20% casein diet. In brain regions, liver and gastrocnemius muscle, the RNA activity [g protein synthesized/(g RNA·d)] significantly correlated with the fractional rate of protein synthesis. The RNA concentration (mg RNA/g protein) was not related to the fractional rate of protein synthesis in any organ. Our results suggest that the treatment of GABA to young male rats are likely to increase the concentrations of plasma GH and the rate of protein synthesis in the brain, and that RNA activity is at least partly related to the fractional rate of brain protein synthesis.  相似文献   

14.
15.
Two experiments were conducted to determine the effects of dehydroepiandrosterone (DHEA) on de novo fatty acid synthesis and oxygen consumption in BHE rats fed a 65% glucose diet. In Experiment 1, starved glucose-refed rats were injected ip with 120 mg of DHEA/kg body wt and hepatic de novo fatty acid synthesis was measured. DHEA-treated rats synthesized less fatty acid in response to starvation refeeding than nontreated rats. In Experiment 2, weanling rats were fed the glucose diet for 4 weeks. One-hundred twenty milligrams of DHEA/kg were injected daily for 3 weeks. Body weight gain, epididymal fat pad weight, and carcass lipid were less in the DHEA-treated rats than in the control rats. Mitochondrial respiration was less and liver size was greater in DHEA-treated rats compared with control rats. Whole body oxygen consumption was increased in DHEA-treated rats, suggesting that this steroid might be stimulating futile energy cycles involving lipid and protein turnover possibly through its effect on glucocorticoid and thyroid hormone function.  相似文献   

16.
A decrease of absolute synthesis of albumin, no change in that of fibrinogen and an increased fractional synthesis of transferrin were observed 3h after intraperitoneal administration of a pharmacological dose of 5 mg of cortisol to 220g rats in the post-absorptive state and previously kept on a diet with 40% protein. The concentration in liver of total free amino acids was practically unchanged at this time. Intraperitoneal administration of a mixture of amino acids with the cortisol raised this concentration and was accompanied by an almost complete de-repression of the synthesis of albumin, with no real effect on that of fibrinogen. In considerable contrast, in rats studied at 24h after intraperitoneal administration of cortisol, and who had been fed once in the interim (but who had received no amino acids intraperitoneally), there was a marked increase in the absolute synthesis of albumin and fibrinogen, with an increase in fractional synthesis that was less proportionately but still very significant and which included transferrin. The amino acid concentrations had risen above the supplemented values at 3h but not as much proportionately as the fractional synthesis rates, and of course not as much as the absolute synthesis rates, of albumin and fibrinogen. These time-dependent effects of cortisol suggest to us that our studies resolve the apparently conflicting results of the effect of cortisol on the synthesis of albumin reported by others.  相似文献   

17.

The use of 2H2O in tank water to assess protein synthesis rates in fish is a relatively novel methodology that could allow for a better understanding of the effects of particular nutritional and environmental variables on rates of protein accretion. As such, this study involved an assessment and comparison of protein synthesis rates in the muscle of juvenile red drum fed a control diet (nutritionally complete) versus a valine (Val)-deficient diet. Six groups of 12 juvenile red drum, initially weighing ~ 4.5 g/fish, were stocked in six separate 38-L aquaria operating as a recirculating system. Fish were acclimatized to experimental conditions for 2 weeks while being fed the control diet. Just prior to initiating the protein synthesis assay, one aquarium of fish was fed the control diet while a second aquarium of fish was fed the Val-deficient diet. Immediately after consuming the experimental diets, each group of fish was moved to an independent aquarium containing 2H2O, and the fractional synthetic rate (FSR) of protein synthesis was obtained at 12, 24, 36 and 48 h after feeding by collecting two fish per treatment at each time point. This protein synthesis assay procedure was performed in three separate sessions, and considered as replicates over time (n = 3) for fish fed the control or Val-deficient diets immediately before initiating the session. Results indicated that a one-time feeding of a diet deficient in Val significantly reduced protein synthesis rates in the muscle of red drum. In addition, a significant effect of time after feeding was found, where observed FSR values peaked at 12 h after feeding and decreased as time progressed. In conclusion, deuterium methodologies were applicable to red drum, and this approach had the sensitivity to assess differences in protein synthesis rates when dietary perturbations were introduced.

  相似文献   

18.
Effect of feeding defatted millet (Sorghum vulgarie) flour at 5, 10 and 14.5% protein levels respectively for six weeks has been studied on rat liver mitochondrial, microsomal and supernatant fractions total lipids, cholesterol, triglycerides, total phospholipids, phosphatidyl choline and phosphatidyl ethanolamine. The results have been compared with rats fed casein at 10% level for the same period. The metabolism of liver subcellular fractions lipids of millet diet and casein diet fed rats has been studied by the incorporation of acetate-1-14C and . A significant increase in mitochondrial triglycerides of rats fed millet diet at 5 and 10% protein level, in microsomes of rats fed millet diet at 5, 10 and 15% protein levels and in supernatant fractions of rats fed millet diet at 5 and 15% protein levels was observed. A significant increase in total cholesterol in mitochondria and microsomes and a significant decrease in supernatant fraction of rats fed millet diet at 10% protein level was observed. A significant increase in mitochondrial total phospholipids, phosphatidyl choline and phosphatidyl ethanolamine in rats fed millet diet at 10% protein level and a decrease in these in rats fed millet diet at 5 per cent protein level was observed. In microsomes total phospholipids were increased in rats millet diet at 10% protein level and phosphatidyl choline was increased in rats fed millet diet at 15% protein level. Total phospholipids, phosphatidyl choline and phosphatidyl ethanolamine were significantly reduced in the supernatant fraction of rats fed millet at 10% protein level.

Incorporation of acetate-1-14C into nonsaponifiable fraction of mitochondria, microsomes and supernatant fractions of rats fed millet diet at 5 and 15 % protein levels was significantly greater, and in saponifiable fractions of the above subcellular fractions was greater in rats fed millet diet at 5 per cent protein level. The specific activity (counts/min/mg) of free cholesterol in mitochondria, microsomes and supernatant fractions of millet diet fed rats was significantly greater, whereas the specific activity of triglycerides was not significantly different from the controls. The acetate-1-14C specific activity of phosphatidyl choline and phosphatidyl ethanolamine was significantly greater in all the above subcellular fractions of millet diet fed rats (except of phosphatidyl choline in rats fed millet diet at 5 % protein level). The specific activities of phosphatidyl choline were significantly greater in mitochondria of rats fed millet diet at 5 % protein level and of phosphatidyl choline and phosphatidyl ethanolamine in microsomes and supernatant fractions of rats fed millet diet at 5 and 15% protein levels. The specific activities of phosphatidyl choline were significantly decreased in mitochondria and microsomes of rats fed millet diet at 10% protein level. The total acetate-1-14C activities (counts/min/g equivalent wet liver) of free and esterified cholesterol triglycerides, phosphatidyl choline and phosphatidyl ethanolamine showed that their synthesis from acetate-1-14C was either enhanced in millet diet fed rats or was comparable to the controls. The total activity of (counts/min/g equivalent wet liver) into phosphatidyl choline and phosphatidyl ethanolamine showed that their synthesis was decreased in microsomes of rats fed millet diet at 10% protein level, increased in rats fed millet diet at 5 and 15% protein levels.  相似文献   

19.
The age-related decline in fat-free mass is accelerated in women after menopause, implying that ovarian hormone deficiency may have catabolic effects on lean tissue. Because fat-free tissue mass is largely determined by its protein content, alterations in ovarian hormones would likely exert regulatory control through effects on protein balance. To address the hypothesis that ovarian hormones regulate protein metabolism, we examined the effect of menopausal status and hormone replacement therapy (HRT) on protein turnover. Whole body protein breakdown, oxidation, and synthesis were measured under postabsorptive conditions using [(13)C]leucine in healthy premenopausal (n = 15, 49 +/- 1 yr) and postmenopausal (n = 18, 53 +/- 1 yr) women. In postmenopausal women, whole body protein turnover and plasma albumin synthesis rates (assessed using [(13)C]leucine and [(2)H]phenylalanine) were also measured following 2 mo of treatment with oral HRT (0.625 mg conjugated estrogens + 2.5 mg medroxyprogesterone acetate, n = 9) or placebo (n = 9). No differences in whole body protein breakdown, oxidation, or synthesis were found between premenopausal and postmenopausal women. Protein metabolism remained similar between groups after statistical adjustment for differences in adiposity and when subgroups of women matched for percent body fat were compared. In postmenopausal women, no effect of HRT was found on whole body protein breakdown, synthesis, or oxidation. In contrast, our results support a stimulatory effect of HRT on albumin fractional synthesis rate, although this did not translate into alterations in circulating albumin concentrations. In conclusion, our results suggest no detrimental effect of ovarian hormone deficiency coincident with the postmenopausal state, and no salutary effect of hormone repletion with HRT, on rates of whole body protein turnover, although oral HRT regimens may increase the synthesis rates of albumin.  相似文献   

20.
Adrenal delta5-3beta-hydroxysteroid dehydrogenase (delta5-3beta-HSD) activity and serum corticosterone level were significantly higher in rats fed with 5% casein or 4% albumin diets after 1 hr of ether anaesthetic stress as compared to the controls, 5% casein and 20% casein (equivalent to 4% albumin) respectively. Ether anaesthesia to 20% casein fed rats caused no change in adrenal delta5-3beta-HSD activity and serum corticosterone level when compared with controls fed 20% casein diet. The results suggest that high milk protein diet may prevent acute stress effects by protecting adrenocortical activity. The present investigation opens up a new area of management of stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号