首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nature of the active site of Chaetomium trilaterale β-xylosidase catalyzing the hydrolysis of β-d-glucopyranoside and β-d-xylopyranoside was investigated by kinetic methods. On experiments with mixed substrates, such as phenyl β-d-xylopyranoside and phenyl β-d-glucopyranoside, the kinetic features agreed very closely with those features theoretically predicted for a single active site of the same enzyme catalyzing the hydrolysis of these two kinds of substrates.

Both the β-glucosidase and β-xylosidase activities were strongly inhibited by glucono-1,5-lactone and nojirimycin (5-amino-5-deoxy-d-glucopyranose). β-Xylosidase activity was inhibited non-competitively by the two inhibitors, but β-glucosidase activity was competitive. Methyl β-d-xylopyranoside, methyl β-d-glucopyranoside, 1-thiophenyl β-d-xylopyranoside, and 1-thiophenyl β-d-glucopyranoside poorly inhibited both activities. Methyl β-d-xylopyranoside inhibited the β-xylosidase activity competitively but the β-glucosidase activity was non-competitive, whereas methyl β-d-glucopyranoside inhibited the β-xylosidase activity non-competitively but the β-glucosidase activity was competitive. 1-Thiophenyl β-d-xylopyranoside and 1-thiophenyl β-d-glucopyranoside behaved as competitive inhibitors.

From these results, it was concluded that the β-xylosidase and β-glucosidase activities reside in one catalytic site, and this suggests that there might be two kinetically distinct binding sites in the active center of the same enzyme.  相似文献   

2.
β-Xylosidase was purified 662 fold from a culture filtrate by ammonium sulfate fractionation, gel filtration on Biogel P-100, DEAE-Sephadex chromatography, and gel filtration on Sephadex G-200. With isoelectric focusing, the purified β-xylosidase found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis. The molecular weight was estimated by gel filtration to be 240,000, and 116,000 by SDS polyacrylamide gel electrophoresis. The purified β-xylosidase had an isoelectric point at pH 3.25, and contained 4% carbohydrate residue. The optimum pH was found to be in the range of 4.5 ~ 5, and the optimum temperature was 55°C. The enzyme activity was inhibited by Hg2 +, SDS, and N-bromosuccinimide at a concentration of 1 × 10?3 m, and also p-chloromercuribenzoate at a concentration of 1 × 10?4m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko = 302.6 sec?1),β-nitrophenyl β-d-xyloside (ko = 438.9 sec?1), o-nitrophenyl β-d-xyloside (ko = 431.0 sec?1), p-chlorophenyl β-d-xyloside (ko = 207.9 sec?1), o-chlorophenyl β-d-xyloside (ko = 211.8 sec?1), β-methylphenyl β-d-xyloside ko = 96.5 sec?1), o-methylphenyl β-d-xyloside (ko = 83.1 sec?1), p-methoxyphenyl β-d-xyloside (ko = 99.3 sec?1), o-methoxyphenyl β-d-xyloside (ko= 100.0 sec?1), xylobiose (ko = 992A sec?1), xylotriose (ko = 1321.9 sec?1), xylotetraose (ko = 7S9.1 sec?1) and xylopentaose (ko = 508.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of the configuration. The purified β-xylosidase was practically free of a-xylosidase and β-glucosidase activities.  相似文献   

3.
β-Xylosidase was purified 25 fold from a culture filtrate by ammonium sulfate fractionation, DEAE-Sephadex chromatography, column electrophoresis, gel filtration on Biogel P-100, and isoelectric focusing. The purified β-xylosidase was found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis and on disc electrophoresis. A molecular weight of 101,000 was estimated by chromatography on Sephadex G-200, and 102,000 was obtained by SDS polyacrylamide gel electrophoresis. The purified p-xylosidase had an isoelectric point at pH 4.45, and contained 4.5% carbohydrate residue. The optimum activity for the enzyme was found to be at pH 4.5 and 55°C. The enzyme activity was inhibited by Hg2 +, and N-bromosuccinimide at a concentration of 1 x 10?3 m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko13.0 sec”1), p-nitrophenyl β-d-xyloside (ko=2l.3 sec?1), o-nitrophenyl β-d-xyloside (ko = 22.2 sec?1), o-chlorophenyl β-d-xyloside (ko = 20.0 sec?1), p-methylphenyl β-d-xyloside (ko~9.0 sec?1), o-methylphenyl β-d-xyloside (ko= 10.7 sec?1), p-methoxyphenyl β-d-xyloside (ko=10.3 sec?1), o-methoxyphenyl β-d-xyloside (&;o=10.9 sec?1), xylobiose (ko = 36A sec?1), xylotriose (ko = 34.5 sec?1), xylotetraose (ko~HA sec?1), and xylopentaose (ko= 13.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of configuration. The purified p-xylosidase was practically free of α-xylosidase and β-glucosidase activities.  相似文献   

4.
A β-xylosidase of a thermophilic fungus, Malbranchea pulchella var. sulfurea No. 48, was purified 99-fold from the culture filtrate after ammonium sulfate fractionation, DEAE-cellulose column chromatography, column electrophoresis and gel filtration on Sephadex G–200. The purified enzyme was found to be homogeneous upon ultracentrifugal analysis, disc electrophoresis and gel filtration. The molecular weight of the enzyme was estimated to be 26,000 by gel filtration, and the sedimentation coefficient was calculated to be 2.78S. at 280 nm in phosphate buffer (pH 6.7) was 13.2. The optimum pH was found to be in the range of 6.2~6.8, and the optimum temperature was 50°C.  相似文献   

5.
β-Glucosidases I, II, and III were isolated from the culture filtrate of a Streptomyces sp. by ammonium sulfate fractionation, hydroxylapatite column chromatography, filtration on Bio-Gel P-100, and DE-52 column chromatography. β-Glucosidase III had a single active band on disc-gel electrophoresis. Its optimum pH and temperature for activity were 6.0 and 60°C, respectively. The isoelectric point and molecular weight of the enzyme were pH 4.5 and 45,000, respectively. From an experiment using 14C-labeled glucose, gentiobiose seemed to be formed from laminaribiose as isomaltose is formed from maltose by fungal α-glucosidase. The enzyme showed transglucosylation and produced gentiobiose from β-gluco-disaccharides and 4-O-β-d-glucopyranosyl-d-manno-pyranose (epicellobiose). The enzyme acted on phenolic β-d-glucosides to produce unknown transfer products.  相似文献   

6.
An active β-amylase was purified from germinated rice seeds by precipitation with ammonium sulfate, acid treatment, chromatographies on DEAE-cellulose and DEAE-Sephadex A-50, and gel filiations on Sephadex G-75. The purified enzyme was homogeneous in disc electrophoretic analysis.

The molecular weight was estimated to be approximately 53,000 by thin-layer gel filtration and polyacrylamide gel electrophoresis. The isoelectric point was found to be pH 5.0 by disc electrofocusing.

The optimum pH was found to be in the pH range of 5.5 to 6.5. The Km value for soluble starch was 3 mg/ml. The enzyme was inhibited by sulfhydryl reagents or heavy metal ions.

The active β-amylase was oxidatively dimerized by treatment with 0.3 m ferricyanide in 3 m urea. The dimerized enzyme was thought to be one of inert β-amylases in ungerminated rice seeds.  相似文献   

7.
A β-mannanase was purified from the culture filtrate of Penicillium purpurogenum No. 618 by 1st and 2nd DEAE-cellulose column chromatographies, and subsequent Ultro-gel chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 57,000 and pH 4.1 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The purified mannanase contained the following amino acids: glycine > serine >glutamic acid > alanine > aspartic acid. The mannanase exhibited maximum activity at pH 5 and 70°C, and was stable in the pH range of 4.5 to 8 and at temperatures up to 65°C. The enzyme activity was not affected considerably by either metal compounds or ethyl- enediaminetetraacetic acid. Copra galactomannan (Gal: Man =1 :14) was finally hydrolyzed to galactose, mannose and β-1,4-mannobiose through the sequential actions of the purified mannanase and the α-galactosidase purified from the same strain.  相似文献   

8.
Crystalline β-galactosidase was prepared from the cell extract of Saccharomyces fragilis KY5463, by procedures including protamine sulfate treatment and DEAE-cellulose, hydroxylapatite and DEAE-Sephadex column chromatographies. Crystals were formed when solid ammonium sulfate was added to solutions of the purified enzyme. This procedure resulted in a 55-fold purification with an over-all yield of l5.4%. The crystalline enzyme appeared to be homogeneous on ultracentrifugation and electrophoresis.

The sedimentation coefficient, , was determined to be 10.0 S. The molecular weight was estimated to be approximately 203,000 by the sedimentation equilibrium method of Yphantis. Electrolysis with carrier ampholytes revealed that this enzyme has an isoelectric point at around pH 4.4.

The enzyme was activated by K+ in addition to bivalent cations, such as Mn2+, Mg2? and Co2+. The Km values for o-NPG and lactose were 4.0×10?3m and 21.0×10?3m, respectively. The enzyme is sulfhydryl dependent and was completely inactivated by mercuric ions or p-chloromercuribenzoate.  相似文献   

9.
A β-xylosidase (β-d-xyloside xylohydrolase, EC 3.2.1.37) and β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) extracted from a wheat bran culture of Aspergillus fumigatus were purified up to 90-fold and 131-fold, respectively, by ammonium sulfate precipitation, gel filtration, ion exchange chromatography, and hydroxylapatite chromatography. Molecular weights of the β-xylosidase and β-glucosidase were 360,000 and 380,000, respectively, each consisting of four identical subunits. The isoelectric points of β-xylosidase and β-glucosidase were at pH 5.4 and 4.5, respectively. The optimum temperature for the β-xylosidase was 75°C, being stable up to 65°C for 20 min and for the β-glucosidase was 65°C, being stable up to 60°C for 20 min. The optimum pH for both enzymes was about 4.5, being stable between 2 and 8 at 50°C for 20 min. Both enzymes were inhibited by Fe3+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate. The apparent Michaelis constants of the β-xylosidase were 2.0 and 23.8 mM for p-nitrophenyl-β-xyloside and xylobiose, respectively, and those of the β-glucosidase were 1.4, 11.4, and 24.8 mM for p-nitrophenyl-β-glucoside, gentiobiose, and cellobiose, respectively. To produce xylose from crude xylooligosac-charides prepared by steam-explosion of cotton seed waste (DP ≤10, 53%, total sugars = 150 g/ liter), the crude enzyme from A. fumigatus (β-xylosidase activity = 14.7 units/ml, xylanase activity = 20 units/ml) could hydrolyze the substrate at 55°C and pH 4.5 resulting in almost complete conversion to xylose (160 g/liter).  相似文献   

10.
A unique β-fructofuranosidase was purified from the extract of Bifidobacterium adolescentis G1 by anion-exchange, hydrophobic, and gel filtration chromatographies, and preparative electrophoresis. The molecular mass was 74kDa by SDS–PAGE, and the isoelectric point was pH 4.5. The enzyme was a monomeric protein. The pH optimum was at 6.1. The enzyme was stable at pH from 6.5 to 10.0, and up to 45°C. The neutral sugar content was 1.2%. The enzyme hydrolyzed 1-kestose faster than sucrose or inulin. The hydrolytic activity was strongly inhibited by Cu2+, Ag+, Hg+, and ρ-chloromercuribenzoic acid. The Km (mM) and k0 (s?1) were: 1-kestose, 1.1 and 231; sucrose, 11 and 59.0; inulin, 8.0 and 149, respectively. From the kinetic results, β-fructofuranosidase from B. adolescentis G1 was concluded to have a high affinity for 1-kestose, thus differing from invertases and exo-inulinases in substrate specificity.  相似文献   

11.
α-Glucosidase was purified from Saccharomyces logos by precipitation with ethanol, and chromatographies on Sephadex G–200, DEAE-Sephadex, DEAE-ceiluiose and Duolite A–2. The purified α-glucosidase was homogeneous on ultracentrifugation and zone electrophoresis using cellulose acetate membrane. The sedimentation coefficient was calculated to be 9.6 S. The molecular weight was estimated to be approximately 2.7 × 105 by gel-filtration technique.

The optimum pH was found to be in the range of 4.6~5.0, and the optimum temperature was 40°C. The enzyme exhibited higher hydrolytic activity toward maltose rather than toward phenyl-α-glucoside and turanose, and no activity toward sucrose.

The enzyme was a glycoprotein containing carbohydrate of about 50%.  相似文献   

12.
An α-glucosidase was purified from flint corn by precipitation with ammonium sulfate, chromatographies on CM-cellulose and Hydroxylapatite and gel-filtrations on Sephadex G-100. The purified enzyme was homogeneous in ultracentrifugal and disc electrophoretic analysis. The sedimentation coefficient was calculated to be 6.5 S. The molecular weight was estimated to be approximately 6.5×104 by gel-filtration technique.

The optimal pH was found to be 3.6 for both maltose and soluble starch. The enzyme lost about 80% of the activity by incubation at 60°C for 10 min.

The ratio of velocity of hydrolysis for maltose, phenyl-α-glucoside and soluble starch was estimated to be 100:14.3:6.1 in this order. The αglucosidase hydrolyzed soluble starch exo-wisely.  相似文献   

13.
A laminaran-hydrolyzing enzyme was purified from the homogenate of suspension-cultured tobacco ceils by the treatment with ion-exchangers and gel filtration. The purified enzyme was homogemous in disc-electrophoresis and was a basic protein. The optimal pH of the enzyme was 5.0. The enzyme was stable at temperature below 40°C. The inhibitory effect of Hg2+ Cu2+ and Ag+ was observed. Investigation of the hydrolysis product revealed that the enzyme attacked laminaran endo-wise to form laminari-tetraose, -triose, -biose and glucose.  相似文献   

14.
Six compounds, Z- and E-fadyenolide (3, 4), 1-ally1-2,3-(methylenedioxy)-4,5-dimethoxy-benzene (5), 4-methoxy-3,5-bis (3′-methyl-2′-butenyl)-benzoic acid (6), 2,6-dihydroxy-4-methoxy-dihydrochalcone (7), and 5-hydroxy-7-methoxyflavanone (8) were isolated from three species of Jamaican Piper, Piper fadyenii, C.D.C., Piper aduncum L. and Piper hispidum Sw. Three amides (9 ~ 11) of 3,5-dimethoxy-4-oxo-5-phenylpent-2-enoic acid using piperidine, pyrrolidine and morpholine, respectively, were synthesized from compounds 3 and 4, and tested for insecticidal activity against the tick Boophilus microplus (Canestrini) and the flour feetle, Tribolium confusum Duval. In our experiment, compounds 9 ~ 11 inhibited ovogenesis of B. microplus and were toxic to T. confusum. Compounds 3 ~ 8 were found to have no activity.  相似文献   

15.
An α-galactosidase from tubers of S. affinis was purified about 130 fold by ammonium sulfate fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The purified enzyme showed a single protein band on disc gel electrophoresis. The molecular weight of the enzyme was determined to be approximately 42,000 by gel filtration and 44,000 by SDS disc gel electrophoresis. The optimum reaction pH was 5.2. The enzyme hydrolyzed raffinose more rapidly than planteose. The activation energy of raffinose and planteose by the enzyme was estimated to be 7.89 and 11.4 kcal/mol, respectively. The enzyme activity was inhibited by various galactosides and structural analogs of d-galactose. Besides hydrolytic activity, the enzyme also catalyzed the transfer reaction of d-galactosyl residue from raffinose to methanol.  相似文献   

16.
A β-1,3-glucanase was detected, using laminarin as substrate, in the culture broth of Chaetomium sp. Major activity was associated with a 70 kDa protein band visualized on a polyacrylamide gel. β-1,3-Glucanase was purified by a one-step, native gel purification procedure. Optimal activity was observed at pH 6.0 and 30 °C (over 30 min). It could degrade cell walls of plant pathogens including Rhizoctonia solani, Gibberella zeae, Fusarium sp., Colletotrichum gloeosporioides and Phoma sp. The N-terminal amino acid residues of the purified β-1,3-glucanase are PYQLQTP, which do not exhibit homology to other fungal β-1,3-glucanases suggesting it may be a novel enzyme. Received 20 July 2005; Revisions requested 2 August 2005 and 27 September 2005; Revisions received 16 September 2005 and 3 November 2005; Accepted 6 November 2005  相似文献   

17.
An acid β-d-galactosidase was purified from the culture filtrate of Corticium rolfsii IFO 6146 by a combination of QAE-Sephadex A-50 and SP-Sephadex C-50 chromatography. The maximum activity of the enzyme towards p-nitrophenyl β-D-galactopyranoside was found to be at pH 2.0 to 2.5 and the enzyme was fairly active at pH 1.5 to l.8. The enzyme was quite stable over a pH range 2.0 to 8.0 at 2°C for 72 hr. The enzymic activity was clearly inhibited by Hg2+. Km value was determined to be 3.84 × 10?4 m, and Vmax was calculated to be 6.9 μ moles per min per mg for p-nitrophenyl β-d-galactopyranoside. Contrary to high activity on the synthetic galactoside, reaction velocity was small when the enzyme acted on lactose.  相似文献   

18.
-Glucosidase and -xylosidase production by a yeastlike Aureobasidium sp. was carried out during solid-state and submerged fermentation using different carbon sources and crude enzymes were characterized. -Glucosidase and -xylosidase exhibited optimum activities at pH 2.0–2.5 and 3.0, respectively. These enzymes had the maximum activities at 65°C and were stable in a wide pH range and at high temperatures.  相似文献   

19.
A neutral α-glucosidase was purified from pig serum by precipitation with ammonium sulfate, chromatographies on DEAE-cellulose and -Sephadex A–50, and gel filtration on Bio-Gel P–300 and Sephadex G–200. The purified enzyme was homogeneous in ultracentrifugal and disc electrophoretic analysis. The sedimentation coefficient (s20,w) was calculated to be 10.7 S, and the isoelectric point, 4.0. The molecular weight was estimated to be approximately 2.7 × 105 by thin-layer gel filtration and SDS-disc electrophoresis.

The enzyme exhibited also glucoamylase activity. The optimal pH was found to be in the pH range of 6.0 to 7.0 for maltose and soluble starch. The ratio of velocity of hydrolysis for maltose (Km, 0.72 mg/ml), soluble starch (Km, 9.8 mg/ml) and shellfish glycogen (Km, 55.6 mg/ml) was calculated to be 100: 110: 5.15 in this order.  相似文献   

20.
A carbohydrate binding protein was found in mid-lactating rat mammary gland. This rat mammary gland lectin agglutinated trypsinized rabbit erythrocytes and the hemagglutination was inhibited by the addition of β-d-galactosides such as lactose, melibiose, UDP-galactose and thio-d-galactoside. The lectin was partially purified by affinity chromatography on a column of Sepharose 4B to which asialo-fetuin had been covalently linked. Rat mammary gland lectin is a glycoprotein with a molecular weight of 14,800, estimated from SDS-PAGE, or 16,800 from gel filtration.

The occurrence of two glycoproteins, C4-casein and α-lactalbumin, is known in rat milk. Bovine κ-casein is a well-characterized glycoprotein. These glycoproteins were found to be bound by the rat mammary gland lectin, when they were desialylated by the action of neuraminidase. Neuraminidase-untreated α-lactalbumin also bound to the lectin but to a lesser extent. The level of the lectin in rat mammary gland was greatly reduced during regression of the gland after weaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号