首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of individual and total contents of capsaicinoids present in Peter peppers (Capsicum annuum var. annuum) at different ripening stages has been studied. Plants were grown in a glasshouse and the new peppers were marked in a temporal space of ten days. The extraction of capsaicinoids was performed by ultrasound‐assisted extraction with MeOH. The capsaicinoids nordihydrocapsaicin (n‐DHC), capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin were analyzed by ultraperformance liquid chromatography (UHPLC)‐fluorescence and identified by UHPLC‐Q‐ToF‐MS. The results indicate that the total capsaicinoids increase in a linear manner from the first point of harvest at ten days (0.283 mg/g FW) up to 90 days, at which point they reach a concentration of 1.301 mg/g FW. The evolution as a percentage of the individual capsaicinoids showed the initial predominance of capsaicin, dihydrocapsaicin, and n‐DHC. Dihydrocapsaicin was the major capsaicinoid up to day 50 of maturation. After 50 days, capsaicin became the major capsaicinoid as the concentration of dihydrocapsaicin fell slightly. The time of harvest of Peter pepper based on the total capsaicinoids content should be performed as late as possible. In any case, harvesting should be performed before overripening of the fruit is observed.  相似文献   

2.
Transverse sections of the placenta of hot pepper, Capsicumannuum var. annuum cv. Karayatsubusa, at different stages afterflowering were examined microscopically. Examination of thecellular structure of the placenta using a light microscoperevealed that some morphological changes took place mainly inthe epidermal tissue of the placenta during maturation. Elongationof the epidermal cells and many osmiophilic granules were recognizedin the epidermal cells of the placenta in which capsaicinoidwas being formed and actively accumulated. Moreover, a granule-likestructure having an absorption at 280 nm was also recognizedby ultraviolet microscopy around the same region where the osmiophilicgranules were observed. By electron microscopy, many electron-densegranules stained with glutaraldehyde and osmium tetroxide wereobserved both in the small vesicles and vacuoles of epidermalcells of the placenta. The electron-dense granules varied insize from smaller than 1 µm to larger than 2 µmin diameter. They were thought to be capsaicinoid and were observedonly in the epidermal cells. Therefore, the epidermal tissueappeared to be the site of capsaicinoid accumulation. 1Formation and metabolism of pungent principle of Capsicum fruits.Part V. (Received December 27, 1979; )  相似文献   

3.
Anthracnose, caused by Colletotrichum spp., is one of the most common diseases affecting sweet pepper and chilli pepper production worldwide, especially in tropical and subtropical zones. This disease results in severe fruit damage both pre- and postharvest. The development of resistant cultivars is the most effective strategy for disease control, which requires knowing the genetic basis of resistance. In this study, we analysed the inheritance of resistance of Capsicum annuum to Colletotrichum scovillei at two fruit development stages. The ripe and unripe fruits were inoculated by conidia suspension, and anthracnose severity was evaluated for 8 days using a score scale. It was found that the inheritance of resistance has independent expression in ripe and unripe fruits. In both cases, two main genes are responsible for resistance with polygenic effects. Genetic control, with a quantitative aspect, is more affected by dominance than the additive effects, in both fruit development stages of C. annuum.  相似文献   

4.
Phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, and capsaicinoid synthetase [Agric. Biol. Chem., 44, 2907 (1980)] activities were investigated in the subcellular fractions from protoplasts of placenta of Capsicum fruits. The subcellular distribution of intermediates of the capsaicinoid biosynthesis, trans-cinnamic acid and trans-p-coumaric acid, and capsaicinoid were also investigated. The activity of trans-cinnamate 4-monooxygenase and capsaicinoid synthetase was in the vacuole fraction. While the activity of phenylalanine ammonia-lyase was in the cytosol fraction. After feeding l-[U-14C]phenylalanine to the protoplast, the newly synthesized trans-p-coumaric acid and capsaicinoid were found in the vacuole fraction, while trans-cinnamic acid was not in the vacuole fraction. The possible role of the vacuole on the biosynthesis of capsaicinoid is also discussed.  相似文献   

5.
Dihydrocapsaicin, one of pungent principles in Capsicum fruits, was formed and accumulated in sweet pepper fruits after 6 days’ post-harvest ripening under continuous light in a medium containing vanillylamine and isocapric acid. No capsaicinoids were formed in sweet pepper fruits ripened in the dark even in the presence of both vanillylamine and isocapric acid. The capsaicinoid newly formed during the ripening was almost exclusively dihydrocapsaicin, as much as 92.8% of the total capsaicinoids. Dihydrocapsaicin was also formed by cell-free extracts prepared from the sweet pepper fruits in a reaction mixture containing vanillylamine and isocapric acid. Dihydrocapsaicin formed was quantified by TLC, GLC, GC-MS and MF.  相似文献   

6.
QTL analysis for capsaicinoid content in Capsicum   总被引:1,自引:0,他引:1  
Pungency or “heat” found in Capsicum fruit results from the biosynthesis and accumulation of alkaloid compounds known as capsaicinoids in the dissepiment, placental tissue adjacent to the seeds. Pepper cultivars differ with respect to their level of pungency because of quantitative and qualitative variation in capsaicinoid content. We analyzed the segregation of three capsaicinoids: capsaicin, dihydrocapsaicin and nordihydrocapsaicin in an inter-specific cross between a mildly pungent Capsicum annuum ‘NuMex RNaky’ and the wild, highly pungent C. frutescens accession BG2814-6. F3 families were analyzed in three trials in California and in Israel and a dense molecular map was constructed comprised mostly of loci defined by simple sequence repeat (SSR) markers. Six QTL controlling capsaicinoid content were detected on three chromosomes. One gene from the capsaicinoid biosynthetic pathway, BCAT, and one random fruit EST, 3A2, co-localized with QTL detected in this study on chromosomes 3 and 4. Because one confounding factor in quantitative determination of capsaicinoid is fruit size, fruit weight measurements were taken in two trials. Two QTL controlling fruit weight were detected, however, they did not co-localize with QTL detected for capsaicinoid content. The major contribution to the phenotypic variation of capsaicinoid content (24–42% of the total variation) was attributed to a digenic interaction between a main-effect QTL, cap7.1, and a marker located on chromosome 2 that did not have a main effect on the trait. A second QTL, cap7.2 is likely to correspond to the QTL, cap, identified in a previous study as having pronounced influence on capsaicinoid content.  相似文献   

7.
Fruit‐set involves a series of physiological and morphological changes that are well described for tomato and Arabidopsis, but largely unknown for sweet pepper (Capsicum annuum). The aim of this paper is to investigate whether mechanisms of fruit‐set observed in Arabidopsis and tomato are also applicable to C. annuum. To do this, we accurately timed the physiological and morphological changes in a post‐pollinated and un‐pollinated ovary. A vascular connection between ovule and replum was observed in fertilized ovaries that undergo fruit development, and this connection was absent in unfertilized ovaries that abort. This indicates that vascular connection between ovule and replum is an early indicator for successful fruit development after pollination and fertilization. Evaluation of histological changes in the carpel of a fertilized and unfertilized ovary indicated that increase in cell number and cell diameter both contribute to early fruit growth. Cell division contributes more during early fruit growth while cell expansion contributes more at later stages of fruit growth in C. annuum. The simultaneous occurrence of a peak in auxin concentration and a strong increase in cell diameter in the carpel of seeded fruits suggest that indole‐3‐acetic acid stimulates a major increase in cell diameter at later stages of fruit growth. The series of physiological and morphological events observed during fruit‐set in C. annuum are similar to what has been reported for tomato and Arabidopsis. This indicates that tomato and Arabidopsis are suitable model plants to understand details of fruit‐set mechanisms in C. annuum.  相似文献   

8.
Pungent principles (Capsaicinoid(s)) were found to be produced in fruits of sweet pepper, Capsicum annuum L. var. grossum, during post-harvest ripening under continuous light. The initial formation was observed after 4 days’ ripening. After 7 days’ ripening, the capsaicinoids content in placenta increased to 12.9 μg per fruit, which was 2.5-fold of that in pericarp. No pungent principles were detected in fruits during ripening in the dark and in seeds under continuous light. In placenta, the formation of dihydrocapsaicin and nordihydrocapsaicin which are the vanillylamides of saturated branched fatty acids was higher than that of capsaicin which is the vanillylamide of an unsaturated one. Remarkable formation and accumulation of carotenoid were also observed during post-harvest ripening under continuous light.  相似文献   

9.
Biosynthetic pathways of acyl moieties of capsaicinoid in intactCapsicum fruits and spheroplasts prepared from placentas ofCapsicum fruits were examined using a radioisotopic technique.In intact Capsicum fruits, L-[U-14C] valine was incorporatedinto capsaicin and dihydrocapsaicin, the acyl constituents ofwhich are even-number branched chain fatty acids, while L-[U-14C]leucine was incorporated into nordihydrocapsaicin and homodihydrocapsaicin,which have odd-number branched chain facty acids as the acylmoieties. The intermediates of the odd- and even-number branchedchain fatty acids were identified with GLC/GPC after the spheroplastshad been incubated with L-[U-14C] valine or L-[U-14C] leucine.After incubation with L-[U-14C] valine, isobutyric acid and8-methyl nonanoic acid were detected, while isopentanoic acidand 9-methyl decanoic acid were found after incubation withL-[U-14C] leucine. The involvement of a-ketoisovalerate or a-ketoisocaproatein the biosynthesis of acyl moieties of capsaicinoid was alsodemonstrated in vitro using cell-free extracts of the placentasof Capsicum fruits. These findings suggest that the acyl moietiesof individual capsaicinoids in Capsicum fruits are synthesizedby pathways similar to those proposed for adipose tissue andbacteria. 1Formation and Metabolism of Pungent Principle of Capsicum Fruits.Part IX. (Received September 2, 1980; Accepted November 17, 1980)  相似文献   

10.
Immature Capsicum annuum fruits treated at wound-sites with glucans from the hyphal walls of Glomerella cingulata and incubated for 24 h or longer accumulated levels of capsicannol phytoalexins sufficient to inhibit rot development by Botrytis cinerea. Elicitor application to intact fruits induced the accumulation of relatively low levels of capsicannol compounds but further phytoalexin accumulation in fruits after wound-inoculation with B. cinerea was much more rapid than in untreated fruits and rot development was suppressed. Capsicannol phytoalexins were produced in the live cells of the epidermis and little or no necrosis was associated with quantities produced in intact tissues. Elicitor treatment of intact fruits to protect against rot development by B. cinerea was achieved without the fruits sustaining unsightly damage.  相似文献   

11.
Summary Chili pepper (Capsicum annuum L., cv. Tampique?o 74) cell suspensions were employed to study the influence of phenylalanine and phenylpropanoids on the total production of capsaicinoids, the hot taste compounds of chili pepper fruits. The effect of capsaicinoid precursors and intermediates on the accumulation of lignin as an indicator of metabolic diversion was also investigated. Addition of 100 μM of either phenylalanine, cinnamic or caffeic acids to chili pepper cell cultures did not cause significant increases in total capsaicinoids (expressed as capsaicin content, and calculated as averages of the measured values) during the growth cycle. The highest total capsaicinoid content was recorded in cultures grown in the presence of vanillin (142.61 μg g−1 f.wt.), followed by cells treated with 100 μM vanillylamine (104.88 μg g−1 f.wt.), p-coumaric acid (72.36 μg g−1 f.wt.). and ferulic acid (34.67 μg g−1 f.wt.). Capsaicinoid content for control cells was 13.97 μg g−1 f.wt. Chili pepper cell suspensions cultured in the presence of 100 μM of either phenylalanine, or cinnamic, caffeic, or ferulic acids, or the same concentration, of vanillin and vanillylamine, did not exhibit statistically significant differences in the content of lignin as compared with control cells. However, addition of p-coumaric acid (100 μM) to the cultute medium significantly increased thelignin production (c. 10–15 times the contents of control cells).  相似文献   

12.
13.

The placental tissue of the highly pungent chilli cultivar, Capsicum chinense Jacq. cv. ‘Umorok’, is used as explants for callus induction. Callus cultures were subcultured after every 32 days and growth curves for a period of six consecutive growth cycles were studied till a stable capsaicinoids producing callus cultures were obtained. The capsaicinoids content in placental tissue explants decreased gradually during the first 2 months of culture as the explants dedifferentiated to form friable callus while the biomass and capsaicinoid content did not show much change in the subsequent growth cycles. The maximum callus biomass of 7.8 g freshweight (FW) or 0.56 g dry weight (DW) per culture were obtained on the 24th day of every growth cycle and the maximum average capsaicinoids content (1.6 mg g?1 FW capsaicin and 0.78 mg g?1 FW dihydrocapsaicin) were obtained on the 20th day of every growth cycle. To investigate the underlying dynamics for capsaicinoid biosynthesis during callus formation, comparative gene expression analysis of the genes involved in capsaicinoid biosynthesis pathway were also studied by qRT-PCR analysis. When compared with placental tissue, all the studied genes showed reduced expression during callus formation, especially putative aminotransferase (pAMT) and pungent gene 1 (Pun1), which were extensively down regulated from the 3rd month onwards in the callus cultures. Therefore, the present study revealed that the down-regulated expression of mainly two putative genes in capsaicinoid biosynthetic pathway (pAMT and Pun1) resulted in lower accumulation of capsaicinoids in callus cultures compared to placental tissues of fruits.

  相似文献   

14.
The aim of the study was to examine the response of pear (Pyrus communis L.) trees to soil and foliar applications of boron (B). The experiment was carried out during 2000–2001 in a commercial orchard in Central Poland on mature `Conference' pear trees grafted on Pyrus communis var. caucasica seedlings planted at a spacing of 4 × 2.5 m on a sandy loam soil with a low hot water-extractable B status. Annually, foliar sprays with B were applied. (i) before full bloom (at green and white bud stage, and when 1–5% of flowers was at full bloom), (ii) after flowering (at petal fall, and 7 and 14 days after the end of flowering), or (iii) postharvest in fall (approximately 6 weeks before leaf fall). Spray treatments involved application of B at a rate of 0.2 kg ha–1 in spring or 0.8 kg ha–1 in fall. Additionally, other trees were supplied with soil-applied B at the bud break stage at a rate of 2 kg ha–1. Trees untreated with B served as the control. The results revealed that foliar applications of B before full bloom or after harvest increased fruit set and fruit yield. Tree vigor, mean fruit weight, firmness, soluble solids concentration and titratable acidity of fruits at harvest were not affected by B treatments. Foliar B sprays before full bloom or after harvest increased B concentrations in flowers, and both leaves and fruitlets at 40 days after flowering. Only the foliar treatments after flowering and soil fertilization with B increased the content of this microelement in fruit and leaves at 80 and 120 days after full bloom. Foliar B application before full bloom or after harvest increased calcium (Ca) in fruitlets at 40 days after full bloom, in fruit, and in leaves at 80 and 120 days after full bloom. Nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) in plant tissues were not affected by B fertilization. After storage, and also after the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had higher firmness and titratable acidity than those from the control trees. After the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had lower membrane permeability and were less sensitive to internal browning than the control fruits. These findings indicate that prebloom and postharvest B sprays are successful in increasing pear tree yielding and in improving fruit storability under the conditions of low B availability in the soil.  相似文献   

15.
Capsaicinoids are unique compounds produced only in peppers (Capsicum spp.). Several studies using classical quantitative trait loci (QTLs) mapping and genomewide association studies (GWAS) have identified QTLs controlling capsaicinoid content in peppers; however, neither the QTLs common to each population nor the candidate genes underlying them have been identified due to the limitations of each approach used. Here, we performed QTL mapping and GWAS for capsaicinoid content in peppers using two recombinant inbred line (RIL) populations and one GWAS population. Whole‐genome resequencing and genotyping by sequencing (GBS) were used to construct high‐density single nucleotide polymorphism (SNP) maps. Five QTL regions on chromosomes 1, 2, 3, 4 and 10 were commonly identified in both RIL populations over multiple locations and years. Furthermore, a total of 109 610 SNPs derived from two GBS libraries were used to analyse the GWAS population consisting of 208 C. annuum‐clade accessions. A total of 69 QTL regions were identified from the GWAS, 10 of which were co‐located with the QTLs identified from the two biparental populations. Within these regions, we were able to identify five candidate genes known to be involved in capsaicinoid biosynthesis. Our results demonstrate that QTL mapping and GBS‐GWAS represent a powerful combined approach for the identification of loci controlling complex traits.  相似文献   

16.
Capsicum are among the most extensively cultivated and consumed plant species in the world, because of their unique pungency, aroma and colour. The typical burning sensation caused by chili peppers is due to the occurrence of a group of alkaloids named capsaicinoids. In the present study, the production of solid callus and cell suspensions from hypocotyl explants of three different chili pepper cultivars (Capsicum annuum L. cv. Mazzolino, Capsicum chinense Jacq. cv. Naga Morich and Pimenta de Neyde), was optimised. In addition, C. chinense cv. Naga Morich cell suspensions were supplemented with biotic elicitors (methyl-jasmonate and chitosan) and with precursors and intermediates of capsaicin biosynthesis (vanillin, phenylalanine and valine), and both cells and media were analysed for capsaicinoid, polyphenol, flavonoid contents and for antioxidant activity. This is the first report regarding capsaicinoid elicitation with pure chitosan and with a combination of precursors of both phenylpropanoid and valine pathways. Overall, the highest capsaicinoid levels were detected in cell extracts from cultures treated with 10 μM methyl-jasmonate and with a combination of phenylalanine and valine amino acids (100 μM each). The present results confirm the possibility of using hypocotyl chili pepper cell suspensions to produce high amounts of health beneficial metabolites.  相似文献   

17.
Ethylene production and respiratory rate were examined in acid citrus fruits such as yuzu, seedless yuzu and daidai, and wase satsuma mandarin. A large amount of ethylene was produced from four varieties of citrus fruits harvested from May to July but not after September. A rise in ethylene production did not always coincide with a rise in respiratory rate. Excised tissues of fruits contained the ability of ethylene production throughout the developmental stages. The endogenous ethylene level at the ripening stage, reached the maximum when the color changed from green to yellow.  相似文献   

18.
Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a β-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.  相似文献   

19.
Lipoxygenase (LOX), peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) activities were determined in pepper (Capsicum annuum) leaves infected with Xanthomonas campestris pv. uesicatoria, from 3 to 15 days after inoculation, before symptom appearance and during the development of the disease. Strong Stimulation of LOX and POX activities was observed in infected leaves at an advanced stage of the disease (12–15 days after inoculation), when bacterial water-soaked spots and a slight chlorosis of the inoculated leaf areas were evident and a decrease in chlorophyll content of infected tissue was detected. The infection also induced a significant increase in CAT activity at the day 9 and a decrease in SOD and CAT activities at the day 12. On the basis of the changes observed, uncontrolled production of active oxygen species at advanced stages of infection is hypothesized.  相似文献   

20.
Raspberry flowers were inoculated in the glasshouse and field with dry conidia of Botrytis cinerea and the fruits derived from them subjected to post-harvest rot tests at c. 20°C and high humidity. Apparently healthy fully-ripe picked fruits derived from inoculated flowers developed grey mould faster than those from non-inoculated flowers in all tests. In the glasshouse experiments, fruits from inoculated tightly closed flower buds rotted more slowly than those from inoculated open flowers or those at later developmental stages. Fruits from inoculated whole flowers rotted more rapidly than those from emasculated flowers; the addition of pollen to emasculated flowers had little effect on post-harvest grey mould. In the dry summer of 1984 no fruits in the field from inoculated whole flowers rotted before ripening, but in the wet season of 1985 pre-harvest grey mould was common and the surviving healthy fruits rotted in c. 1 day after picking. Only minor differences were detected in host susceptibility to post-harvest grey mould in both glasshouse and field tests, the ranking of genotypes varied depending on whether or not flowers had been inoculated. The susceptibility of pistils of 40 Rubus genotypes to infection was examined 7 and 28 days after inoculation of stigmas with dry conidia. Conidia germinated on the stigmas and produced hyphae which grew through transmitting tissues of the styles to infect carpels symptomlessly in 17 red raspberries, one blackberry, two Rubus spp. and one hybrid. No germination occurred on stigmas of cv. Carnival and New York Selection 817.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号