首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The heat-induced gelation properties of myosin in low salt concentration were studied. Freshly prepared myosin formed gels with an extremely high rigidity in 0.1 to 0.3 m KC1 at pH 6.0 on heating. This high heat-induced gel formability of myosin filaments diminished during storage, concomitant with the loss of the filament formability inherent in the native myosin. Presumably intermolecular aggregation was the cause of this loss during storage. The difference in the heat-induced gelation of myosin filaments at a low salt concentration (0.2 m KC1) and that of myosin monomers at a high salt concentration (0.6 m KC1) was clearly.distinguishable from their gelling behavior. The high gelation ability of freshly prepared myosin filaments upon heating seems to develop through the interfilamental head-head aggregation on the surface of the filaments without involving the tail portion of the molecule.  相似文献   

2.
The irreversibility of the dissociation of “myosin B” stored in 0.6 m KCl at pH 5.7 and 3°C was attributed to the rapid denaturation of F-actin dissociated from “myosin B”

F-Actin was less stable than myosin A, in 0.18~0.60 m KCl at pH 5.7 and temperatures between 0 ~3°C.

The decrease in the ability of F-actin to bind with myosin A was slightly dependent on storage temperature, and there was no apparent relation with the decrease in the solubility.

A hypothetical scheme for F-actin denaturation was proposed.  相似文献   

3.
Changes in the viscosity of the F-actin solutions which occur on addition of Ca2+ ions were investigated. The viscosity of F-actin decreased on addition of Ca2+ ions. The amount of Ca2+ ions needed to decrease the viscosity changed with pH of the solution, namely, 20~30 mm at pH 7, 15~20 mm at pH 6 and 5~10mm at pH 5.5. Other divalent cations had the same action on F-actin, but monovalent cations did not affect the F-actin viscosity even at the concentration as high as 1 m. Intrinsic viscosity of F-actin with and without Ca2+ions was 250 ±40 (ml/g) and 670 ±80 (ml/g), respectively. The cause of this viscosity change was discussed from the results of electron microscopic observation and light scattering measurements.  相似文献   

4.
Digestibilities of native, 5 m urea-denatured and 8 m urea-denatured glycinin were studied. Urea was removed by dialysis before digestion. The tryptic digestion of the proteins are influenced by ionic strength. Under low ionic strength condition (0 m NaCl), the proteins, even native glycinin, are well degraded. On the other hand, under high ionic strength condition (0.5 m NaCl), native glycinin resists the tryptic attack and 5 m urea-denatured glycinin is best degraded. The digestibility of 8 m urea-denatured glycinin is lower than that of 5 m urea-denatured one under the condition. The gel filtration and electrophoretic properties show that the digestion intermediate like glycinin-T (the intermediate from native glycinin) is contained in the digestion products. These suggest that the urea-denatured protein contains the almost renatured component after removal of urea. A larger amount of the glycinin-T-like protein was detected at 8 m urea denaturation than at 5 m urea. Therefore, glycinin renatures more readily from 8 m urea denaturation. Probably this is the cause of the decreased digestibility at 8 m urea denaturation.  相似文献   

5.
Some chemical and physical properties of agarose (AG) and agaropectin (AP) isolated from agar of various red seaweeds were studied. The two components were isolated by acrinol. Methanol containing sodium iodide was superior to the mixed solvent of ethanol and acetone (1:1) as solvent for removing acrinol. Greater value of the ratio of intrinsic viscosity of both AG and AP in the solution of 0.1 m sodium chloride against that in the mixed solution of 4 m urea and 0.001 m sodium thiocyanate made water holding capacity greater except sample whose molecular weight is very small. Water holding capacity of AG was decreased with increasing ratio of d-galactose plus 6-O-methyl-d-galactose against 3,6-anhydro-l-galactose, and with lower liquefying temperature of gel. In the case of AP, however, these relations were not always distinct.  相似文献   

6.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

7.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

8.
A conjugated enzyme system, alanine dehydrogenase (AIDH) for stereospecific reduction of pyruvate to l-alanine and glucose dehydrogenase (GDH) for regeneration of NADH, were coimmobilized in a nanofiltration membrane bioreactor (NFMBR) for the continuous production of l-alanine from pyruvate with NADH regeneration. Since pyruvate was proved to be unstable at neutral pH, it was kept under acidic conditions and supplied to NFMBR separately from the other substrates. As 0.2 m pyruvate in HCl solution (pH 4), 10 mm NAD, 0.2 m glucose, and 0.2 m NH4Cl in 0.5 m Tris buffer (pH 8) were continuously supplied to NFMBR with immobilized AIDH (100 U/ml) and GDH (140 U/ml) at the retention time of 80 min, the maximum conversion, reactor productivity, and NAD regeneration number were 100%, 320 g/liter/d, and 20,000, respectively. To avoid the effect of pyruvate instability, a consecutive reaction system, lactate dehydrogenase (l-LDH) and AIDH, was also used. In this system, the l-LDH provides pyruvate, the substrate for the AIDH reaction, from l-lactate regenerating NADH simultaneously, so the pyruvate could be consumed as soon as it was produced. As 0.2 m l-lactate, 10 mm NAD, 0.2 m NH4Cl in 0.5 m Tris buffer (pH 8) were continuously supplied to NFMBR with immobilized l-LDH (100 U/ml) and AIDH (100 U/ml) at the retention time of 160 min, the maximum conversion, reactor productivity, and the NAD regeneration number were 100%, 160 g/Iiter/d, and 20,000, respectively.  相似文献   

9.
A thin-layer flow cell system for the determination of l-ascorbic acid by an ascorbate electrode was constructed and several components of this system were investigated. The most preferable conditions for optimum operation of the system were as follows: injection volume 150 μ1, delay coil length 60 cm, flow rate 1 ml/min, temperature 20°C, cell spacer thickness 0.2 mm. The linear response region was 0.2-3.0 mm and 0.02-0.5 mm (original l-ascorbic acid concentration) in the cases of pure oxygen and atmospheric oxygen bubbling, respectively. The relative standard variation at 1.5 mm l-ascorbic acid was 3.1 % for 20 successive assays. The measuring time was 2–3 min for each of these assays.  相似文献   

10.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

11.
The viscosity change of myosin A concentrated solution with or without other components was measured as the incubation time elapsed at 30°C.

The viscosity of myosin A solution increased, but that of F-actin solution did not. The shear stress at 0.04 sec?1 was not increased to 1.0 dyne/cm2 in the former, but in the latter was below 0.5 dyne/cm2.

The viscosity of myosin B solution increased slightly, but that of native tropomyosin-free myosin B solution decreased remarkably. In both the shear stress at 0.04 sec?1 was greater than or equal to 15 dynes/cm2.

The speed of the viscosity increase in the presence of 3 mm pyrophosphate and 3 mm MgCl2 was higher in concentrated solution of myosin B than in that of native tropomysin-free myosin B. The shear stress at 0.04 sec?1 after 6 hr at 30°C was 11.5 and 8.2 dynes/cm2, respectively.

The effect of native tropomyosin and actin on the viscosity change was discussed.  相似文献   

12.
The turbidity and hardness of a heat-induced gel prepared from ovalbumin were examined at various pHs and ionic strengths. Depending on the conditions of the medium, a transparent solution, transparent gel, turbid gel, or turbid suspension was obtained by heating. The hardness was a maximum with the conditions that gave a transparent or slightly turbid gel. The gel and coagulums were solubilized by 1% SDS, but not by 6 m urea or 50 mm mercaptoethanol. The solution obtained by SDS treatment contained polymers shorter than octamers.  相似文献   

13.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

14.
NADP-dependent maltose dehydrogenase (NADP-MalDH) was completely purified from the cell free extract of alkalophilic Corynebacterium sp. No. 93–1. The molecular weight of the enzyme was estimated as 45,000~48,000. The enzyme did not have a subunit structure. The isoelectric point of the enzyme was estimated as pH 4.48. The pH optimum of the enzyme activity was pH 10.2, and it was stable at pH 6 to 8. The temperature optimum was 40°C, and the enzyme was slightly protected from heat inactivation by 1 mm NADP. The enzyme oxidized d-xylose, maltose and maltotriose, and the Km values for these substrates were 150mm, 250 mm and 270 mm, respectively. Maltotetraose and maltopentaose were suitable substrates. The Km value for NADP was 1.5 mm with 100mm maltose as substrate. The primary product of this reaction from maltose was estimated as maltono-δ-lactone, and it was hydrolyzed non-enzymatically to maltobionic acid. The enzyme was inhibited completely by PCMB, Ag+ and Hg2+.  相似文献   

15.
β-N-Acetyl-D-hexosaminidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purifted by making an acetone-dried preparation of the mid-gut gland, extracting with 50 mM citrate-phosphate buffer (pH 4.0) (about 13% of the extracted proteins was β-N-acetyl-D-hexosaminidase), ammonium sulfate fractionation, and column chromatographies on CM-Sepharose and DEAE-Sepharose. The purifted β-N-acetyl-D-hexosaminidase was homogeneous on SDS–PAGE, and sufficiently free from other exo-type glycosidases. The molecular weight was 56,000 by SDS–PAGE. The enzyme hydrolyzed both p-nitrophenyl β-N-acetyl-D-glucosaminide and p-nitrophenyl β-N-acetyl-D-galactosaminide. For p-nitrophenyl β-N-acetyl-D-glucosaminide, the pH optimum was 3.7, the optimum temperature was 45°C, and the Km was 0.24 mM. For p-nitrophenyl β-N-acetyl-D-galactosaminide, these were pH 3.4, 45°C, and 0.15 mM, respectively. The enzyme liberated non-reducing terminal β-Iinked N-acetyl-D-glucosamine or N-acetyl-D-galactosamine from various 2-aminopyridyl derivatives of oligosaccharides of N-glycan or glycolipid type except of GM2-tetrasaccharide. As the enzyme was stable around pH 3.5–5.5, it may be useful for long time reactions around the optimum pH.  相似文献   

16.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

17.
The chromatography on Cellex D DEAE-SF (Bio-Rad Lab.) or TEAE-cellulose (Serva) equilibrated against 0.28 m KCl solution containing 0.02 m tris-HCl buffer at pH 8.0 was found to be suitable for the refinement of myosin B.

The ultraviolet absorption spectrum and ATPase activity of the eluted fractions showed that “myosin B” was fractionated and purified by this technique, especially by the preferential removal of the fraction suggested as ribonucleic acid related substance.

The chromatography may provide the effective way to investigate changes of “myosin B” during aging of meat.  相似文献   

18.
Xylanase induction by β-xyloside was investigated in non-growing conditions using non-induced mycelia of Streptomyces sp. No. 3137 harvested from glucose medium. The mycelia started to produce xylanase without lag time when β-xyloside was added. The rate of xylanase synthesis was dependent on the concentration of β-xyloside added to the inducing culture medium. The induction constants of various β-xylosides were calculated from the Lineweaver-Burk plots; those of methyl-, isopropyl-, butyl- and ethylencyanohydrin-β-d-xylosides were 10.53 mm, 3.83 mm, 0.55mm and 0.25 mm, respectively. Some α-xylosides repressed xylanase synthesis. The rate of xylanase synthesis decreased suddenly after the addition of α-xyloside. The inhibition constants of methyl-, ethyl- and isopropyl-α-d-xylosides were 8.80 mm, 12.50 mm and 33.33 mm, respectively. The xylanase induction was also repressed by glucose. However, this repression was completely restored after consuming additional glucose.  相似文献   

19.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

20.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号