首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of highly purified pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) from barley (Hordeum vulgare) leaves was studied under conditions where the catalyzed reaction was allowed to approach equilibrium. The activity of PFP was monitored by determining the changes in the levels of fructose-6-phosphate, orthophosphate, and fructose-1,6-bisphosphate (Fru-1,6-bisP). Under these conditions PFP activity was not dependent on activation by fructose-2,6-bisphosphate (Fru-2,6-bisP). Inclusion of aldolase in the reaction mixture temporarily restored the dependence of PFP on Fru-2,6-bisP. Alternatively, PFP was activated by Fru-1,6-bisP in the presence of aldolase. It is concluded that Fru-1,6-bisP is an allosteric activator of barley PFP, which can substitute for Fru-2,6-bisP as an activator. A significant activation was observed at a concentration of 5 to 25 [mu]M Fru-1,6-bisP, which demonstrates that the allosteric site of barley PFP has a very high affinity for Fru-1,6-bisP. The high affinity for Fru-1,6-bisP at the allosteric site suggests that the observed activation of PFP by Fru-1,6-bisP constitutes a previously unrecognized in vivo regulation mechanism.  相似文献   

2.
Fructose-2,6-bisphosphatase from rat liver   总被引:16,自引:0,他引:16  
An enzyme that catalyzes the stoichiometric conversion of fructose 2,6-bisphosphate into fructose 6-phosphate and inorganic phosphate has been purified from rat liver. This fructose 2,6-bisphosphatase copurified with phosphofructokinase 2 (ATP: D-fructose 6-phosphate 2-phosphotransferase) in the several separation procedures used. The enzyme was active in the absence of Mg2+ and was stimulated by triphosphonucleotides in the presence of Mg2+ and also by glycerol 3-phosphate, glycerol 2-phosphate and dihydroxyacetone phosphate. It was strongly inhibited by fructose 6-phosphate at physiological concentrations and this inhibition was partially relieved by glycerol phosphate and dihydroxyacetone phosphate. The activity of fructose 2,6-bisphosphatase was increased severalfold upon incubation in the presence of cyclic-AMP-dependent protein kinase and cyclic AMP. The activation resulted from an increase in V (rate at infinite concentration of substrate) and from a greater sensitivity to the stimulatory action of ATP and of glycerol phosphate at neutral pH. The activity of fructose 2,6-bisphosphatase could also be measured in crude liver preparations and in extracts of hepatocytes. It was then increased severalfold by treatment of the cells with glucagon, when measured in the presence of triphosphonucleotides.  相似文献   

3.
4.
果糖-1,6-二磷酸的酶法测定   总被引:5,自引:0,他引:5  
前言 果糖-1,6-二磷酸(简称FDP)在临床上有广泛用途,主要是作为治疗心脏缺血症的辅助药物,其工业化生产引起了人们越来越浓厚的兴趣。因此,无论是生产或者临床应用试验中,FDP的含量分析都十分重要。  相似文献   

5.
致力于建立一条控制或降低大气中CO2浓度的途径,选择对 进行代谢工程以便改进其光合固定CO2的效率。作为研究的初始阶段,将编码丙糖磷酸异构酶、果糖-1,6-二磷酸醛缩酶及果糖-1,6-二磷酸酶的3个基因构建进一个由启动子trc控制的表达质粒pTrcFAT,成功地在大肠杆菌中实现了上述3个基因的活性共表达。活性测定结果显示:从1L培养液获得的破菌上清液每分钟可以催化二羟丙酮磷酸(DHAP)转化成700μmol果糖-6-磷酸。在此基础上进一步构建了这3个基因共表达的大肠杆菌-蓝藻穿梭表达质粒,也在大肠杆菌中实现了活性表达,当外泊基因的操纵子与载体质粒以大于1:1的比例进行构建时,可显著提高外源基因的表达量及相应的的酶活性。  相似文献   

6.
7.
Pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) was quantified in developing barley (Hordeum vulgare) leaves by immunostaining on western blots using a purified preparation of barley leaf PFP as standard. Fructose-2,6-bisphosphate (Fru-2,6-bisP) was quantified in the same tissues. Depending on age and tissue development, the concentration of PFP varied between 11 and 80 [mu]g PFP protein g-1 fresh weight, which corresponds to 0.09 to 0.65 nmol g-1 fresh weight of each of the [alpha] and [beta] PFP subunits. The level depends primarily on the maturity of the tissue. In the same tissues the concentration of Fru-2,6-bisP varied between 0.07 and 0.46 nmol g-1 fresh weight. Thus, the concentrations of PFP subunits and Fru-2,6-bisP were of the same order of magnitude. In young leaf tissues the concentration of PFP subunits may exceed the concentration of Fru-2,6-bisP. This means that the amount of Fru-2,6-bisP present will be too low to occupy all the allosteric binding sites on PFP even though the concentration of Fru-2,6-bisP exceeds the Ka(Fru-2,6-bisP) by several orders of magnitude. These results are discussed in relation to Fru-2,6-bisP as a regulator of enzyme activities under in vivo conditions.  相似文献   

8.
以来自“掖单4号”的玉米果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶(F2KP)基因cDNA片段(AF007582)为基础,运用RT-PCR和RACE技术,从“紫玉糯1号”中获得了1个2469bp的玉米F2KP基因cDNA克隆,命名为mF2KP,GenBank登录号为AF334143。该cDNA包含1个2226bp的开放阅读框,编码741个氨基酸。序列分析表明,两个玉米品种的F2KP基因存在一定差异,mF2KP基因的3′端非编码区比AF007582序列短38bp;在mF2KP的1592、1593和1605位置上,分别比AF007582序列多出1个碱基,导致阅读框在一个小范围内发生了移位,North-ern杂交表明,不同玉米组织中mF2KP的表达差异明显。在茎中mF2KP的表达水平比叶片,苞叶以及雄花序中的表达水平低,但比未成熟种子中的表达水平高,在未成熟种子中,仅能检测到很弱的mF2KP基因表达。  相似文献   

9.
10.
Fructose-1,6-bisphosphate,a regulator of metabolism   总被引:1,自引:0,他引:1  
Summary Fructose-1, 6-bisphosphate affects the rate of a large variety of enzyme reactions. In some instances its role as a physiologic effector is well documented. In many cases the effects of fructose bishosphate on particular enzymes have been demonstrated in vitro but the link to physiologic conditions has not yet been established. It is the purpose of this paper to summarize the scattered findings in fructose bisphosphate as an effector of enzyme reactions and to draw some conclusions about the role of the compound in metabolic regulation.  相似文献   

11.
N.N. Rao  V.V. Modi 《Phytochemistry》1976,15(10):1437-1439
Fructose-1,6-diphosphatase (FDPase) from unripe mango was separated into two components by ammonium sulfate fractionation, one active at pH 6 (acidic FDPase) and the other at pH 8.5 (alkaline FDPase). The alkaline component had a lower Km. (0.15 × 10?3 M) than the acidic component (1.7 × 10?3 M) towards the substrate (FDP) and the allosteric inhibitor AMP. It also showed greater heat stability and higher activation in the presence of EDTA as compared to the acidic FDPase. Both components showed a higher activation with Mn2+ ions than with Mg2+ ions.  相似文献   

12.
通过RT-PCR,结果RACE技术,得到了玉米(Zea maysL.)果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶的全长cDNA克隆。命名为mF2KP,氨基酸序列同源性比较发现,mF2KP蛋白可以分为两个部分;C端包含高度保守的催化功能区。N端为植物中特有的多肽,将mF2KP基因中一段包含完整催化功能区的片段在大肠杆菌(Escherichia coli)中表达,融合蛋白具有果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶活性,Northern杂交证明在种子活力不同的幼苗中,mF2KP的转录水平存在明显差异。种子活力越高,幼苗中mF2KP的转录水平越低。  相似文献   

13.
通过RT-PCR,结合RACE技术,得到了玉米(Zea mays L.)果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶的全长cDNA克隆,命名为mF2KP.氨基酸序列同源性比较发现,mF2KP蛋白可以分为两个部分:C端包含高度保守的催化功能区,N端为植物中特有的多肽.将mF2KP基因中一段包含完整催化功能区的片段在大肠杆菌(Escherichia coli)中表达,融合蛋白具有果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶活性.Northern杂交证明在种子活力不同的幼苗中,mF2KP的转录水平存在明显差异.种子活力越高,幼苗中mF2KP的转录水平越低.  相似文献   

14.
The substrate level of the photosynthetic reductive pentosephosphate cycle in spinach leaves during SO2 fumigation wassurveyed. At the beginning of SO2 fumigation, fructose-1,6-bisphosphateincreased and fructose-6-phosphate decreased, while ribulose-1,5-bisphosphateremained unchanged and 3-phosphoglyceric acid rapidly decreased.These results suggested that the inhibition of photosynthesisin spinach leaves with SO2 might be due to inactivation of fructose-1,6-bisphosphatase. (Received May 26, 1982; Accepted September 27, 1982)  相似文献   

15.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

16.
The significance of the glycolytic and gluconeogenic conversion of fructose-6-phosphate and fructose-1,6-bisphosphate on sugar metabolism was investigated in maize (Zea mays L.) kernels. Maximum extractable activities of the pyrophosphate (PPi) dependent phosphofructokinase, fructose-1,6-bisphosphatase, and the ATP-dependent phosphofructokinase were measured in normal and four maize genotypes, which accumulate relatively more sugars and less starch, to determine how these enzymes are affected by the genetic lesions. Normal endosperm accumulated more dry matter than the high sugar/low starch genotypes, but protein contents did not differ greatly among the genotypes. Mutation of several starch biosynthetic enzymes had little impact on the activities of PPi-dependent phosphofructokinase, fructose-1,6-bisphosphatase, and ATP-dependent phosphofructokinase, despite the altered capacity of the cell to synthesize starch. The PPi-dependent phosphofructokinase appeared to be more active toward glycolysis in all genotypes studied. Activity of the PPi-dependent phosphofructokinase in shrunken (low sucrose synthase genotype) did not differ from the activity in other genotypes, suggesting that the gluconeogenic production of PPi may not be the primary role of the enzyme. As expected, shrunken kernels contained more sugars and less starch than normal kernels throughout kernel development except at the very early stages. Developmental profiles of normal kernels also showed marked changes in the PPi-dependent phosphofructokinase activity, whereas the level of ATP-dependent phosphofructokinase activity remained relatively steady during kernel development. In addition, the ATP-dependent phosphofructokinase, and not the PPi-dependent phosphofructokinase, appeared to correlate more closely with respiration rate. These findings suggest that glycolysis catalyzed by the ATP-dependent phosphofructokinase may serve primarily to support energy production, and glycolysis catalyzed by the PPi-dependent phosphofructokinase may contribute mainly to generation of biosynthetic intermediates.  相似文献   

17.
18.
Summary Partially purified fructose diphosphatase from the obligate chemolithotroph,Thiobacillus neapolitanus has been characterized, and some of its regulatory properties described. The enzyme had a high effinity for its substrate, but was inhibited by substrate at concentrations above 1 mM. The enzyme had an absolute requirement for a divalent cation. In the absence of EDTA there was a single pH optimum in the alkaline range between 8.5 and 9.5; in the presence of EDTA there was considerable was activity at both neutral and alkaline pH. This diphosphatase was inhibited by AMP at 10–4 M or greater-, the lower the pH, the greater the AMP inhibition. Treatment of the enzyme with 5×10–5 Mpara hydroxy mercuribenzoate allowed retention of full catalytic activity while abolishing considerable AMP inhibition. Exposure of the enzyme to several concentrations of urea had no effect on the AMP inhibition. Homocystine (0.06 mM) and coenzyme A (0.1 mM) had no effect. At 1 mM, PEP caused 60% inhibition, 2, 3-diphosphoglyceric acid produced 26% inhibition, and pyruvate had no effect.  相似文献   

19.
20.
PFP的研究进展   总被引:1,自引:0,他引:1  
焦磷酸:果糖-6-磷酸1-磷酸转移酶(PFP)可催化果糖-6-磷酸与果糖-1,6-二磷酸间的可逆转变.该酶广泛存在于各种高等植物及一些微生物体内.文章综述了90年代以来有关PFP的一些研究进展.包括:PFP的种类与亚基构成、活性中心、底物特异性、酶活性的调节及功能等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号