首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

2.
为阐明超甜玉米(Zea mays L.var.saccharata Bailey)亲本对F_1种子物质利用性状遗传效应,研究了19份自交系和其测配的10个杂交组合的杂种优势及亲子回归关系。结果表明,超甜玉米自交系及F_1种子的淀粉含量、蛋白质含量、脂肪含量、百粒重、种子物质动用量和种子物质利用率差异较大,10个杂交组合中亲本和F_1种子的淀粉含量、脂肪含量、百粒重均存在显著差异。F_1种子淀粉含量和百粒重均表现出正向超亲优势,即近高亲本遗传;而F_1种子的蛋白质含量、脂肪含量、种子物质动用量和种子物质利用率为近低亲本遗传。聚类分析和杂种优势分析表明,性状差异较大的FH14、Q26、GT22、GT2等亲本测配的杂交组合在种子百粒重或种子物质利用率等性状上具有较强的超亲优势。回归分析表明,母本对F_1种子的淀粉含量、百粒重有负效应,对种子物质动用量和种子物质利用率有正效应;父本对种子淀粉含量有负效应,对种子物质利用率有正效应。  相似文献   

3.
A hybridization barrier leads to the inability of seed formation after intergeneric crossings between Brassica rapa and Raphanus sativus. Most B. rapa lines cannot set intergeneric hybrid seeds because of embryo breakdown, but a B. rapa line obtained from turnip cultivar ‘Shogoin-kabu’ is able to produce a large number of hybrid seeds as a maternal parent by crossings with R. sativus. In ‘Shogoin-kabu’ crossed with R. sativus, developments of embryos and endosperms were slower than those in intraspecific crossings, but some of them grew to mature seeds without embryo breakdown. Intergeneric hybrid seeds were obtained in a ‘Shogoin-kabu’ line at a rate of 0.13 per pollinated flower, while no hybrid seeds were obtained in a line developed from Chinese cabbage cultivar ‘Chiifu’. F1 hybrid plants between the lines of ‘Shogoin-kabu’ and ‘Chiifu’ set a larger number of hybrid seeds per flower, 0.68, than both the parental lines. Quantitative trait loci (QTLs) for hybrid seed formation were analyzed after intergeneric crossings using two different F2 populations derived from the F1 hybrids, and three QTLs with significant logarithm of odds scores were detected. Among them, two QTLs, i.e., one in linkage group A10 and the other in linkage group A01, were detected in both the F2 populations. These two QTLs had contrary effects on the number of hybrid seeds. Epistatic interaction between these two QTLs was revealed. Possible candidate genes controlling hybrid seed formation ability in QTL regions were inferred using the published B. rapa genome sequences.  相似文献   

4.
We explored the extent to which the soil seed bank differed genetically and spatially in comparison to two actively growing stages in a natural population of Plantago lanceolata. All seed-bank seeds, seedlings, and adults of P. lanceolata within eight subunits in a larger population were mapped, subjected to starch gel electrophoresis, and allozyme analysis in 1988. Gel electrophoresis was also used to estimate the mating system in two years, 1986 and 1988. The spatial distributions of seeds, seedlings, and adults were highly coincident. Allele frequencies of the dormant seeds differed significantly from those of the adults for four of the five polymorphic loci. In addition, a comparison of the genotype frequencies of the three life-history stages indicated that the seed bank had an excess of homozygotes. Homozygosity, relative to Hardy-Weinberg expectations, decreased during the life cycle (for seed bank, seedlings, and adults respectively: Fit = 0.19, 0.09, 0.01; Fis = 0.14, 0.04, -0.12). Spatial genetic differentiation increased sixfold during the life cycle: (for seed bank, seedling and adults: Fs1??? = 0.02, 0.05, 0.12). The apparent selfing rate was 0.01 in 1986 and 0.09 in 1988. These selfing rates are not large enough to account for the elevated homozygosity of the seed bank. Inbreeding depression, overdominance for fitness, and a “temporal Wahlund's effect” are discussed as possible mechanisms that could generate high homozygosity in the seed bank, relative to later life-history stages. In Plantago lanceolata, the influence of the mating system and the “genetic memory” of the seed bank are obscured by the time plants reach the reproductive stage.  相似文献   

5.
Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α′ subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.  相似文献   

6.
Results are reported of crossing a dwarf seed stalk line (mean height 44.8 cm) from Israel with five inbred lines of the Rijnsburger type each having normal tall seed stalks (mean heights 83.1–105.9 cm). The seed stalk height of F1 generations from these crosses was slightly greater than that of the Rijnsburger parents but segregation occurred in the F2 giving plants which could be considered ‘dwarf’ and ‘normal’ with respect to seed stalk height. Selfing individual F2‘dwarf’ plants produced F3 progenies whose mean heights were in the dwarf range, and were significantly correlated with those of their F2 parent. The results obtained in the F2 and F3 families suggest that although a major recessive gene for dwarfness may be present, substantial minor gene and environmental variation is also involved.  相似文献   

7.
Inhibition of passive haemagglutination showed the presence of the allotypic specificities Aa1 Aa2, Aa3, Ab4, Ab5 and Ab6 on polypeptide subunits of rabbit IgG belonging to the phenotypes Aa1-3/Ab4-4 Aa2-2/Ab4-4, Aa3-3/Ab4-4, Aa3-3/Ab4-5 and Aa3-3/Ab4-6, prepared by oxidative sulphitolysis followed by isolation on Sephadex G-100 in 6m urea and 0.05m formic acid. The determinants Aa1, Aa2 and Aa3 were found only on H chains and Ab4, Ab5 and Ab6 only on L chains. Of the latter, Ab4 and Ab5 were found in both fractions, i.e. L1 and L2, of the light chains, while Ab6 was found only in fraction L1.  相似文献   

8.
The aim of this study is to determine the feasibility of Fourier transform infrared (FT-IR) spectroscopy for simultaneous determination of saponin contents in different soybean cultivars. In cross validation between predicted content of saponin by PLS regression modeling from FT-IR spectra and measured content by HPLC, total saponin contents were predicted with good accuracy (R 2 ≥ 0.71). In external validation, saponin group Ab (R 2 = 0.88), saponin DDMP-group βg (R 2 = 0.85), total saponin group B (R 2 = 0.88), and total saponin content (R 2 = 0.87) were predicted with good accuracy, while prediction for saponin group Aa (R 2 = 0.58), saponin group Bb′ (R 2 = 0.58), and total saponin group A (R 2 = 0.25) had relatively lower accuracy. Considering these results, we suggest that the PLS prediction system for saponin contents using FT-IR analysis could be applied as a novel screening tool for high yielding lines in soybean breeding.  相似文献   

9.
A study of the effects produced by gamma-irradiation of dry F1 seeds of common wheat at 200 Gy is described in the work. The experimental material was hybrids produced from near-isogenic lines based on Bezostaya 1. Irradiation led to a significant decrease in the productivity traits of F1 plants but did not affect the survival of plants under the given growth conditions. It has been found that one of the effects of the F1 seed irradiation was a relative, compared to the control, increase in the frequency of male gametes with the 1BL/1RS translocation that participated in the production of F2 grains. The irradiation induced mutations at gliadin loci with a frequency of 7.4% (against 0.5% in the control).  相似文献   

10.
Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC–PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1?g mature dry seeds of wild soybean was 16.08?±?3.13?μmol. In two-week-old seedlings, produced from 1?g mature seeds, it was 27.94?±?6.52?μmol. Group A saponins were highly concentrated in seed hypocotyl (4.04?±?0.71?μmol). High concentration of DDMP saponins (7.37?±?5.22?μmol) and Sg-6 saponins (2.19?±?0.59?μmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP?+?B?+?E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.  相似文献   

11.
Studies of quantitative trait loci based on genetic linkage maps require the establishment of a mapping population. Permanent mapping populations are more ideal than temporary ones because they can be used repeatedly. However, there has been no reported permanent sporophyte population of economically important kelp species. Based on the characteristics of the kelp life cycle, we proposed a method to establish, and then constructed experimentally, an “immortalized F2” (IF2) population of Undaria pinnatifida. Doubled-haploid “female” and “male” sporophytes were obtained through the parthenogenesis of a female gametophyte clone and the selfing of a “monoicous” gametophyte clone (originally male), respectively, and they were used as the parents. The F1 hybrid line was generated by crossing the female and male gametophytes derived from the respective female and male parents. Full-sibling F2 gametophyte clones, consisting of 260 females and 260 males, were established from an F1 hybrid sporophyte. Thirty-five females and 35 males were randomly selected and paired to give rise to an IF2 population containing 35 crossing lines. A parentage analysis using 10 microsatellite markers confirmed the accuracy of the IF2 population and indicated the feasibility of this method. This proposed method may be adapted for use in other kelp species, and thus, it will be useful for genetic studies of kelp.  相似文献   

12.
 Stearic acid is one of the two saturated fatty acids found in soybean [Glycine max (L.) Merr.] oil, with its content in the seed oil of commercial cultivars averaging 4.0%. Two mutants, KK-2 and M25 with two- and six-fold higher stearic acid contents in the seed oil than cv ‘Bay’, were identified after X-ray seed irradiation. Our objective was to determine the genetic control of high stearic acid content in these mutants. Reciprocal crosses were made between each mutant and ‘Bay’, and between the two mutants. No maternal effect for stearic acid content was observed from the analysis of F1 seeds in any of the crosses. Low stearic acid content in ‘Bay’ was partially dominant to high stearic acid content in KK-2 and M25, and high stearic acid content in KK-2 was partially dominant to high stearic acid content in M25. Cytoplasmic effects were not observed, as demonstrated by the lack of reciprocal cross differences for stearic acid content in our analysis of F2 seeds from F1 plants. The stearic acid content in F2 seeds of KK-2בBay’ and M25בBay’ crosses segregated into three phenotypic classes which satisfactorily fit a 1:2:1 ratio, indicating that high stearic acid content in KK-2 and M25 was controlled by recessive alleles at a single locus. The data for stearic acid content in F2 seeds of the KK-2×M25 cross satisfactorily fit a 3:9:1:3 phenotypic ratio. The F2 segregation ratio and the segregation of F3 seeds from individual F2 plants indicated that KK-2 and M25 have different alleles at different loci for stearic acid content. The alleles in KK-2 and M25 have been designated as st 1 and st 2, respectively. The stearic acid content (>30.0%) found in the st 1 st 1 st 2 st 2 genotype is the highest known to date in soybean, but it was not possible to develop the line with this genotype because the irregular seeds failed to grow into plants after germination. Therefore, tissue culture methods must be developed to perpetuate this genotype. Received: 28 March 1997 / Accepted: 18 April 1997  相似文献   

13.
Summary Successful crossing is reported between L. atlanticus Gladst. (2n = 38) and L. cosentinii Guss. (2n = 32), using lines of both species selected for crossability followed by selection of relatively fertile progenies. In one cross, 82E75, from a single F2 segregating plant, 22 F3 seeds were obtained. Some other less crossable combinations were completely sterile in the f1 or F2. Backcrossing to both parent species was successful, but some crosses gave relatively more seed by using F2 plants for backcrossing rather than F2's. It is concluded that potential exists for introgression of useful genes in both directions.  相似文献   

14.
A novel crystal protein that exhibited potent cytotoxicity against human leukemic T-cells was cloned from the Bacillus thuringiensis TK-E6 strain. The protein, designated as parasporin-2Ab (PS2Ab), was a polypeptide of 304 amino acid residues with a predicted molecular weight of 33,017. The deduced amino acid sequence of PS2Ab showed significant homology (84% identitiy) to parasporin-2Aa (PS2Aa) from the B. thuringiensis A1547 strain. Upon processing of PS2Ab with proteinase K, the active form of 29 kDa was produced. The activated PS2Ab showed potent cytotoxicity against MOLT-4 and Jurkat cells and the EC50 values were estimated as 0.545 and 0.745 ng/mL, respectively. The cytotoxicity of PS2Ab was significantly higher than that of PS2Aa reported elsewhere. Although both cytotoxins were structurally related, it was thought that the minor differences found were responsible for the different cytotoxicities of PS2Ab and PS2Aa.  相似文献   

15.
 Chickpea (Cicer arietinum L.) ranks third in the world, and first in the Mediterranean basin, for production among pulses. Despite its importance as a crop and considerable research effort, traditional breeding methods have so far been unable to produce cultivars with a large impact on chickpea production. Interspecific hybridization is known to improve yield in many crops. Therefore, an attempt was made to increase the seed yield in chickpea through the introgression of genes from wild relatives at the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, from 1987 to 1995. Four crosses, ILC 482 (C. arietinum)×ILWC 179 (C. echinospermum) and ILC 482×ILWC 124 (C. reticulatum) and their reciprocals, were made. Pedigree selection was used to advance the material. Heterosis was recorded visually in F1s, and single plant measurements for seed yield were recorded in F2 populations. Promising and uniform progenies were bulked in the F5 generation. Out of 96 F6 lines, 22 were selected on the basis of seed yield and other agronomic characters, and evaluated in a replicated trial for seed yield and 14 agronomical, morphological and quality characters. A high level of heterosis was observed in F1s. Several F2 plants produced two to three times more seed yield than the best plant from the cultigen. Nine F7 lines out-yielded the cultigen parent by up to 39%. Over 2 years, 12 lines had a higher yield than the cultigen parent. These lines were not only high yielding but also free of any known undesirable traits from the wild species, such as spreading growth habit, pod dehiscence, and non-uniform maturity. Quality traits, such as seed shape, type, colour, weight, and testa texture, protein content, cooking time and an organoleptic test of a Middle East dish, Homos Bi-Tehineh, were also similar to the cultigen parent. Both C. echinospermum and C. reticulatum contributed towards the increased yield. Received: 11 July 1996 / Accepted: 15 November 1996  相似文献   

16.
Chickpea (Cicer arietinum L.) is particularly sensitive to water stress at its reproductive phase and, under conditions of water stress, will abort flowers and pods, thus reducing yield potential. There are two types of chickpea: (i) Macrocarpa (“Kabuli”), which has large, rams head‐shaped, light brown seeds; and (ii) Microcarpa (“Desi”), which has small, angular and dark‐brown seeds. Relatively speaking, “Kabuli” has been reported to be more sensitive to water stress than “Desi”. The underlying mechanisms associated with contrasting sensitivity to water stress at the metabolic level are not well understood. We hypothesized that one of the reasons for contrasting water stress sensitivity in the two types of chickpea may be a variation in oxidative injury. In the present study, plants of both types were water stressed at the reproductive stage for 14 d. As a result of the stress, the “Kabuli” type exhibited an 80% reduction in seed yield over control compared with a 64% reduction observed for the “Desi” type. The decrease in leaf water potential (Ψw) was faster in the “Kabuli” compared with the “Desi” type. At the end of the water stress period, Ψw was reduced to ?2.9 and ?3.1 MPa in the “Desi” and “Kabuli” types, respectively, without any significant difference between them. On the last day of stress, “Kabuli” experienced 20% more membrane injury than “Desi”. The chlorophyll content and photosynthetic rate were significantly greater in “Desi” compared with “Kabuli”. The malondialdehyde and H2O2 content were markedly higher at the end of the water stress in “Kabuli” compared with “Desi”, indicating greater oxidative stress in the former. Levels of anti‐oxidants, such as ascorbic acid and glutathione, were significantly higher in “Desi” than “Kabuli”. Superoxide dismutase and catalase activity did not differ significantly between the two types of chickpea, whereas on the 10th day, the activities of ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase were higher in “Desi”. These findings indicate that the greater stress tolerance in the “Desi” type may be ascribed to its superior ability to maintain better water status, which results in less oxidative damage. In addition, laboratory studies conducted by subjecting both types of chickpea to similar levels of polyethylene glycol‐induced water stress and to 10 μ.mol/L abscisic acid indicated a greater capacity of the “Desi” type to deal with oxidative stress than the “Kabuli” type. (Managing editor: Ping He)  相似文献   

17.
The cooperativity effects between the O/N–H???F anionic hydrogen-bonding and O/N–H???O hydrogen-bonding interactions and electrostatic potentials in the 1:2 (F:N-(Hydroxymethyl)acetamide (signed as “ha”)) ternary systems are investigated at the B3LYP/6-311++G** and MP2/6-311++G** levels. A comparison of the cooperativity effect in the “F???ha???ha” and “FH???ha???ha” systems is also carried out. The result shows that the increase of the H???O interaction energy in the O–H???O–H, N–H???O–H or N–H???O?=?C link is more notable than that in the O–H???O?=?C contact upon ternary-system formation. The cooperativity effect is found in the complex formed by the O/N–H???F and O/N–H???O interactions, while the anti-cooperativity effect is present in the system with only the O/N–H???F H-bond or the “FH???ha???ha” complex by the N???H–F contact. Atoms in molecules (AIM) analysis and shift of electron density confirm the existence of cooperativity. The most negative surface electrostatic potential (V S,min ) correlates well with the interaction energy E int.(ha???F–) and synergetic energy E syn., respectively. The relationship between the change of V S,min (i.e., ΔV S,min ) and E syn. is also found.
Figure
Surface electrostatic potential on the 0.001 au molecular surface  相似文献   

18.
 Determining the genetic potential of a base population from the properties of their parental lines would improve the efficiency of a breeding program. In the present study, we investigated whether the means of the parents and the genetic distance determined from RAPD data (GD) or multivariate analysis (Mahalanobis D2), mid-parent heterosis (MPH), and the absolute difference between means of the parents (∣P1−P2∣) can be used for predicting the means and genetic variances (σ^2 g ) of F3:4 lines derived from different crosses in faba beans. The material comprised 18 intra- and 18 inter-pool crosses among lines from the Minor, Major, and Mediterranean germplasm pools. Fifty F3:4 lines from each cross were evaluated for days to anthesis, plant height, seeds per plant, and seed yield in German (GE) and Mediterranean (ME) environments. GD estimates between parent lines ranged from 0.38 to 0.58, while D2 ranged from 45.5 to 134.7. Correlations between means of the parents and F3:4 lines were highly significant for most traits. Estimates of σ2 g for all traits showed non-significant correlations with MPH, GD, D2. In one ME, ∣P1−P2∣ had significant associations with σ^2 g for seed yield and days to anthesis. The predicted usefulness of crosses, defined as the sum of the population mean and selection responses, was most closely associated with the means of F3:4 lines. We conclude from this study that the means of F3:4 lines can be predicted from the means of the parents, whereas the prediction of genetic variance is still an unsolved problem Received: 12 December 1997 / Accepted: 13 July 1998  相似文献   

19.
High erucic acid rapeseed (HEAR) oil is of interest for industrial purposes because erucic acid (22:1) and its derivatives are important renewable raw materials for the oleochemical industry. Currently available cultivars contain only about 50% erucic acid in the seed oil. A substantial increase in erucic acid content would significantly reduce processing costs and could increase market prospects of HEAR oil. It has been proposed that erucic acid content in rapeseed is limited because of insufficient fatty acid elongation, lack of insertion of erucic acid into the central sn-2 position of the triaclyglycerol backbone and due to competitive desaturation of the precursor oleic acid (18:1) to linoleic acid (18:2). The objective of the present study was to increase erucic content of HEAR winter rapeseed through over expression of the rapeseed fatty acid elongase gene (fae1) in combination with expression of the lysophosphatidic acid acyltransferase gene from Limnanthes douglasii (Ld-LPAAT), which enables insertion of erucic acid into the sn-2 glycerol position. Furthermore, mutant alleles for low contents of polyunsaturated fatty acids (18:2 + 18:3) were combined with the transgenic material. Selected transgenic lines showed up to 63% erucic acid in the seed oil in comparison to a mean of 54% erucic acid of segregating non-transgenic HEAR plants. Amongst 220 F2 plants derived from the cross between a transgenic HEAR line and a non-transgenic HEAR line with a low content of polyunsaturated fatty acids, recombinant F2 plants were identified with an erucic acid content of up to 72% and a polyunsaturated fatty acid content as low as 6%. Regression analysis revealed that a reduction of 10% in polyunsaturated fatty acids content led to a 6.5% increase in erucic acid content. Results from selected F2 plants were confirmed in the next generation by analysing F4 seeds harvested from five F3 plants per selected F2 plant. F3 lines contained up to 72% erucic acid and as little as 4% polyunsaturated fatty acids content in the seed oil. The 72% erucic acid content of rapeseed oil achieved in the present study represents a major breakthrough in breeding high erucic acid rapeseed.  相似文献   

20.

Background

Bacillus thuringiensis (Bt) Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry) proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low.

Methodology/Principal Findings

Binding site interactions were investigated between Cry34Ab1/Cry35Ab1 and coleopteran active insecticidal proteins Cry3Aa, Cry6Aa, and Cry8Ba on western corn rootworm midgut brush border membrane vesicles (BBMV). Competitive binding of radio-labeled proteins to western corn rootworm BBMV was used as a measure of shared binding sites. Our work shows that 125I-Cry35Ab1 binds to rootworm BBMV, Cry34Ab1 enhances 125I-Cry35Ab1 specific binding, and that 125I-Cry35Ab1 with or without unlabeled Cry34Ab1 does not share binding sites with Cry3Aa, Cry6Aa, or Cry8Ba. Two primary lines of evidence presented here support the lack of shared binding sites between Cry34Ab1/Cry35Ab1 and the aforementioned proteins: 1) No competitive binding to rootworm BBMV was observed for competitor proteins when used in excess with 125I-Cry35Ab1 alone or combined with unlabeled Cry34Ab1, and 2) No competitive binding to rootworm BBMV was observed for unlabeled Cry34Ab1 and Cry35Ab1, or a combination of the two, when used in excess with 125I-Cry3Aa, or 125I-Cry8Ba.

Conclusions/Significance

Combining two or more insecticidal proteins active against the same target pest is one tactic to delay the onset of resistance to either protein. We conclude that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6Aa, or Cry8Ba for deployment as insect resistance management pyramids for in-plant control of western corn rootworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号