首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Summary An extracellular endopolygalacturonate lyase of Cytophaga johnsonii was purified from the culture filtrate. It appeared to be homogeneous as judged by polyacrylamide gel electrophoresis at pH 8.6 as well as pH 4.3. The purified enzyme had a pH optimum around 9.0 and required Ca++ ions for its maximum activity. The apparent K mfor polygalacturonic acid was found to be 0.22%. Both paper and column chromatography indicated formation and accumulation of an unsaturated monomer along with unsaturated di-, tri-, tetra- and pentamers from polygalacturonic acid by the enzyme action, indicating that the enzyme cleaved the substrate randomly in a non-hydrolytic manner. The glycosidic linkage next to the non-reducing end of polygalacturonic acid was not resistant to attack by this enzyme unlike in other known polygalacturonate lyases.Abbreviations PG lyase Polygalacturonate lyase - Tris Tris (hydroxymethyl) aminomethane  相似文献   

2.
A DNA fragment containing a Klebsiella oxytoca gene for polygalacturonate trans-eliminase was cloned into the kanamycin resistance transposon Tn5. This new transposon, designated Tn5-Pga +, had a transposition frequency of 1×10-6. The broad host range plasmid pR751::Tn5-Pga + was conjugally transferred to a variety of genetic backgrounds. The ability to degrade polygalacturonate was expressed in Aeromonas hydrophila, Alcaligenes eutrophus, Azotomonas insolita, Escherichia coli, Pseudomonas putida and Rhodopseudomonas sphaeroides, but not in Zymomonas mobilis.Abbreviations PGA polygalacturonate - UGA unsaturated galacturonic acid - PATE polygalacturonate trans-eliminase - PG polygalacturonase - CVP crystal-violet pectate  相似文献   

3.
The physiological relevance of a novel thiol methyltransferase from cabbage, and its possible role in sulphur metabolism have been investigated. The enzyme was absent from the chloroplast, the site of sulphate reduction, and was localized in the cytosol. Potential substrates were initially screened on the basis of their ability to inhibit the methylation of iodide, a previously known substrate for the enzyme. Thiocyanate, 4,4 ′ ‐thiobisbenzenethiol, thiophenol, and thiosalicylic acid were identified as possible substrates. Methylation of these thiols by the purified enzyme using [Methyl3H]S‐adenosyl‐ L ‐methionine confirmed their nature as substrates. The purified enzyme strongly preferred thiocyanate as a methyl acceptor. The enzyme had Km values of 11, 51, 250 and 746 mmol m ? 3 for thiocyanate, 4,4 ′ ‐thiobisbenzenethiol, thiophenol and thiosalicylic acid, respectively. The identity of methylthiocyanate as the product of thiocyanate methylation by the purified enzyme was confirmed by mass spectrometry. The enzyme was strictly associated with glucosinolate‐containing plants. Thiol substrates of the enzyme are known products of glucosinolate hydrolysis. Our observations indicate that this enzyme could be involved in the detoxification of reactive thiols produced upon glucosinolate degradation in these plants.  相似文献   

4.
Four ruminal Prevotella type strains, P. ruminicola JCM8958T, P. bryantii B14T, P. albensis M384T, and P. brevis ATCC19188T, were characterized for polysaccharide-degrading activities with the reducing sugar release assay and zymogram analyses. Carboxymethylcellulase, xylanase, and polygalacturonate (PG)-degrading enzyme activities were determined in cultures grown on oat spelt xylan, xylose, arabinose, cellobiose, and glucose as sole growth substrates. P. ruminicola and P. albensis showed carboxymethylcellulase induction patterns. When xylan was supplied as a sole growth substrate, xylanase activities produced by P. bryantii and P. albensis were at least 18- and 11-fold higher, respectively, than during growth on other carbohydrates, suggesting that the regulation of the xylanases was highly specific to xylan. All strains constitutively produced PG-degrading enzymes. The corresponding activity of P. bryantii was more than 40-fold higher than in other strains. Zymogram analyses routinely detected the presence of high-molecular-weight (100–170 kDa) polysaccharide-degrading enzymes in ruminal Prevotella. Characteristics of the polysaccharide-degrading activities showed diversity of ruminal Prevotella species. Received: 29 November 1999 / Accepted: 1 February 2000  相似文献   

5.
A strain of thermophilic bacterium, Bacillus sp., with pectolytic activity has been isolated. It produced an extracellular endo-polygalacturonate trans-eliminase (PL, EC 4.2.2.1) when grown at 60°C on a medium containing polygalacturonate (PGA). The PL was purified by hydrophobic, cation exchange, and size exclusion column chromatographies. The molecular mass of the enzyme was 50 kDa by SDS-PAGE. The isoelectric point of the enzyme was pH 5.3. The enzyme had a half-life of 13 and 1 h at 65 and 70°C, respectively, and showed optimal activity around at 70°C and pH 8.0. It had protopectinase activity, besides PL activity, on lemon protopectin and cotton fibers. The first 20 amino acids sequence of the enzyme had significant similarity with that of PL from methophilic Bacillus subtilis, with 50% identity.  相似文献   

6.
Purification and characterization of cathepsin B from goat brain   总被引:1,自引:0,他引:1  
Cathepsin B was purified to an apparent homogeneity from goat brain utilizing the techniques of homogenization, autolysis at pH 4, 30–70% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography, organomercurial afinity chromatography and ion-exchange chromatography on CM-Sephadex C-50. The enzyme had a pH optima of 6 with α-N-benzoyl-D, L-arginine-β-naphthIylamide, benzyloxycarbonyl-arginine-arginme-4-methoxy -β-naphthylamide and azocasein as substrates. TheKm values for the hydrolysis of α-N-benzoyl-D, L-arginine-β-naphthylamide and benzyloxycarbonyl-arginine-arginine-4-methoxy -β-naphthylamide were 2.36 and 0.29 mM respectively in 2.5% dimethylsulphoxide. However, the correspondingKm values for these substrates in 1 % dimethylsulphoxide were 0.51 and 0.09 mM. The enzyme was strongly inhibited by thiol inhibitors and tetrapeptidyl chloromethylketones. Leupeptin inhibited the enzyme competitively withK i value of 12.5 × l0−9M. Dithioerythritol was found to be the most potent activator of this sulfhydryl protease. Molecular weight estimations on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on analytical Sephadex G-75 column were around 27,000 and 29,000 daltons respectively. Cathepsin B was found to reside in the lysosomes of goat brain. The highest percentage of cathepsin B was in cerebrum. However, the specific activity of the enzyme was maximum in pituitary gland.  相似文献   

7.
A halophilic NAD+-dependent 2-aminobutyrate dehydrogenase (EC1.4.1.1) was purified to homogeneity from a crude extract of an extreme halophile, Halobacterium saccharovorum DSM 1137, with a 30% yield. The enzyme had a molecular mass of about 160 kDa and consisted of four identical subunits. It retained more than 70% of the activity after heating at 60 °C for 1 h and kept it at 30 °C for 8 months in the presence of 2 M NaCl. The enzyme showed maximum activity in the presence of 2 M RbCl or KCl. The enzyme required NAD+ as a coenzyme and used -2-aminobutyrate, -alanine, and -norvaline as substrates. The best substrate was -2-aminobutyrate. The optimum pH was 9.3 for the oxidative deamination of -2-aminobutyrate and 8.6 for the reductive amination of 2-ketobutyrate. The Michaelis constants were 1.2 mM for -2-aminobutyrate, 0.16 mM for NAD+, 0.012 mM for NADH, 0.78 mM for 2-ketobutyrate, and 500 mM for ammonia in the presence of 2 M KCl. The Km values for the substrates depended on the concentration of KCl, and the Km values decreased under high salt conditions.  相似文献   

8.
Phosphoglucoisomerase from cytosol of immature wheat endosperm was purified 650-fold by ammonium sulphate fractionation, isopropyl alcohol precipitation, DEAE-cellulose chromatography and gel filtration through Sepharose CL-6B. The enzyme, with a molecular weight of about 130,000, exhibited maximum activity at pH 8.1. It showed typical hyperbolic kinetics with both fructose 6-P and glucose 6-P withK m of 0.18 mM and 0.44mM respectively. On either side of the optimum pH, the enzyme had lower affinity for the substrates. Using glucose 6-P as the substrate, the equilibrium was reached at 27% fructose 6-P and 73% glucose 6-P with an equilibrium constant of 2.7. The ΔF calculated from the apparent equilibrium constant was +597 cal mol-1. The activation energy calculated from the Arrhenius plot was 5500 cal mol-1. The enzyme was completely inhibited by ribose 5-P, ribulose 5-P and 6-phosphogluconate, withK i values of 0.17, 0.25 and 0.14 mM respectively. The probable role of the enzyme in starch biosynthesis is discussed.  相似文献   

9.
An aminopeptidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purified from an acetone-dried preparation by extracting, ammonium sulfate precipitation, Hi-Load Q column chromatography, isoelectric focusing, and POROS HP2 and HQ column chromatography. The molecular weight of the enzyme was estimated to be 61 kDa by SDS-polyacrylamide gel electrophoresis and 59 kDa by gel permeation chromatography. The isoelectric point of the enzyme was 5.2 and the optimum pH was 7.0 toward leucine p-nitroanilide (Leu-pNA). The enzyme was inhibited by o-phenanthroline. The activity of the enzyme treated with o-phenanthroline was completely recovered by adding excess Zn2+. Relative hydrolysis rates of amino acid-pNAs and amino acid-4-methylcoumaryl-7-amides (amino acid-MCAs) indicated that the enzyme preferred substrates having Ala or Met as an amino acid residue. The enzyme had a Km of 32.2 μM and kcat of 29.5 s−1 with Ala-pNA and a Km of 11.1 μM and kcat of 9.49 s−1 with Ala-MCA. The enzyme sequentially liberated amino acids from the amino-termini of Ala–Phe–Tyr–Glu.  相似文献   

10.
Succinate-cytochrome c reductase was inhibited in vitro and in vivo by phenobarbitone, aminophylline and neostigmine using both 2,6-dichlorophenolindophenol (DCIP) and cytochrome c (cyt c) as substrates. The enzyme was also activated by gallamine towards both substrates. In vitro, phenobarbitone and aminophylline inhibited the enzyme with respect to the reduction of DCIP and cyt c in a non-competitive manner with Ki values of 1.5 × 10?5 and 5.7 × 10?5 M, respectively. Moreover, neostigmine competitively inhibited the enzyme towards both substrates with Ki values of 1.36 × 10?5 and 1.50 × 10?5 M, respectively.  相似文献   

11.
A low molecular weight acid phosphatase was purified to homogeneity from chicken heart with a specific activity of 42 U/mg and a recovery of about 1%. Nearly 800 fold purification was achieved. The molecular weight was estimated to be 18 kDa by SDS-polyacrylamide gel electrophoresis. Para-nitrophenyl phosphate, phenyl phosphate and flavin mononucleotide were efficiently hydrolysed by the enzyme and found to be good substrates. Fluoride and tartrate had no inhibitory effect while phosphate, vanadate and molybdate strongly inhibited the enzyme. The acid phosphatase was stimulated in the presence of glycerol, ethylene glycol, methanol, ethanol and acetone, which reflected the phosphotransferase activity. When phosphate acceptors such as ethylene glycol concentrations were increased, the ratio of phosphate transfer to hydrolysis was also increased, demonstrating the presence of a transphosphorylation reaction where an acceptor can compete with water in the rate limiting step involving hydrolysis of a covalent phospho enzyme intermediate. Partition experiments carried out with two substrates, para-nitrophenyl phosphate and phenyl phosphate, revealed a constant product ratio of 1.7 for phosphotransfer to ethylene glycol versus hydrolysis, strongly supporting the existence of common covalent phospho enzyme intermediate. A constant ratio of K cat/K m, 4.3×104, found at different ethylene glycol concentrations, also supported the idea that the rate limiting step was the hydrolysis of the phospho enzyme intermediate.  相似文献   

12.
Phospholipase A2 was isolated from Trypanosoma congolense and purified to electrophoretic homogeneity. The enzyme appeared to exist in a dimeric form with subunit molecular weights of 16 500 and 18 000. It had a pH optimum of 6·8. Kinetic analysis with different substrates, showed that the enzyme had exceptional specificity for 1,2,dimyristoyl-sn-phosphatidylcholine and 1,2,dioleoyl-sn-phosphatidylcholine with Km values of 1·85 × 10?3 M and 2·12 × 10?3 M respectively. The Arrhenius plot was linear with an activation energy of 5·8 kcal mol?1. Inhibition studies with parahydroxymercuribenzoate and tri-butyltinoxide were positive thus implicating a thiol group at the catalytic site of the enzyme. The enzyme was stable to heat treatment and possessed haemolytic and anticoagulating properties.  相似文献   

13.
A Lactobacillus sp. isolated from soil and capable of growing on xylose-containing medium exhibited high glucose isomerase activity. The enzyme was thermostable, stable toward dialysis, and activated by heat treatment. It did not show the presence of xylose or ribose isomerase activities; the Km for glucose and xylose substrates were 0.48M and 0.513M, respectively. The heat treatment of ultrasonic crude extract gave insoluble fixed active glucose isomerase enzyme. The properties of free and immobilized enzyme in heat-fixed whole cells differed in many respects. The optimum temperature for enzyme activity changed from 70 to 85°C, the optimum substrate concentration changed from 1.0M to 2.4M, and the optimum pH from 7.4 to 6.0. Co2+ and Mg2+ ions activated the enzyme when used singly, but in combination they inhibited the enzyme and Mn2+ had no effect on the enzyme. Free and immobilized enzymes, when used in the used in the conversions of corn and bagasse hydrolysates to fructose, gave 58, 25.6%, and 50, 27.6% conversions, respectively. Immobilized enzyme retained a significant activity for more than 30 hr and was able to operate at higher glucose concentrations showing less products inhibition effect as compared to free enzyme. In the batch process it was able to operate for about eight cycles.  相似文献   

14.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

15.
Indole-3-acetic acid (IAA) amidosynthetases catalyzing the ATP-dependent conjugation of IAA and amino acids play an important role in the maintenance of auxin homeostasis in plant cells. A new amidosynthetase, indole-3-acetic acid:l-aspartic acid ligase (IAA-Asp synthetase) involved in IAA-amino acid biosynthesis, was isolated via a biochemical approach from immature seeds of the pea (Pisum sativum L). The enzyme was purified to homogeneity by a three-step procedure, involving PEG 6000 fractionation, DEAE-Sephacel anion-exchange chromatography, and preparative PAGE, and characterized as a 70-kDa monomeric protein by analytical gel filtration and SDS-PAGE. Rabbit antiserum against recombinant AtGH3.5 cross-reacted with the pea IAA-Asp synthetase, and a single immunoreactive polypeptide band was observed at 70 kDa. The purified enzyme had an apparent isoelectric point at pH 4.7, the highest activity at pH 8.2, preferred Mg2+ as a cofactor, and was strongly activated by reducing agents. Similar to known recombinant GH3 enzymes, an IAA-Asp synthetase from pea catalyzes the conjugation of phytohormone acyl substrates to amino acids. The enzyme had the highest synthesizing activity on IAA, followed by 1-NAA, SA, 2,4-D, and IBA, whereas activities on l-Trp, IPA, PAA, (±)JA, and 2-NAA were not significant or not detected. Of 14 amino acids tested, the enzyme had the highest activity on Asp and lower activity on Ala and Lys. Glutamate was found to be a very poor substrate and no conjugating activity was observed on the rest of the amino acids. Steady-state kinetic analysis indicated that IAA and aspartate were preferred substrates for the pea IAA-Asp synthetase. The enzyme exhibited both higher affinities for IAA and Asp (K m = 0.2 and 2.5 mM, respectively) and catalytic efficiencies (k cat/K m = 682,608.7 and 5080 s−1 M−1, respectively) compared with other auxins and amino acids examined. This study describes the first amidosynthetase isolated and purified from plant tissue and provides the foundation for future genetic approaches to explain the role of IAA-Asp in Pisum sativum physiology.  相似文献   

16.
This work describes the purification and characterization of a trypsin-like enzyme with fibrinolytic activity present in the abdomen of Haematobia irritans irritans (Diptera: Muscidae). The enzyme was purified using a one-step process, consisting of affinity chromatography on SBTI-Sepharose. The purified protease showed one major active proteinase band on reverse zymography with 0.15% gelatin, corresponding to a molecular mass of 25.5 kDa, with maximum activity at pH 9.0. The purified trypsin-like enzyme preferentially hydrolyzed synthetic substrates with arginine residue at the P1 position. The K m values determined for three different substrates were 1.88 × 10–4, 1.28 × 10–4, and 1.40 × 10–4 M for H--benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222), dl-Ile-Pro-Arg-p-nitroanilide (S2288), and DL-Phe-Pip-Arg-p-nitroanilide (S2238), respectively. The enzyme was strongly inhibited by typical serine proteinase inhibitors such as SBTI (soybean trypsin inhibitor, K i = 0.19 nM) and BuXI (Bauhinia ungulata factor Xa inhibitor, K i = 0.48 nM), and less inhibited by LDTI (leech-derived tryptase inhibitor, K i = 1.5 nM) and its variants LDTI 2T and 5T (0.8 and 1.5 nM, respectively). The most effective inhibitor for this protease was r-aprotinin (r-BPTI) with a K i value of 39 pM. Synthetic serine protease inhibitors presented only weak inhibition, e.g., benzamidine with K i = 3.0 × 10–4 M and phenylmethylsulfonyl fluoride (PMSF) showed traces of inhibition. The purified trypsin-like enzyme also digested natural substrates such as fibrinogen and fibrin net. The protease showed higher activity against fibrinogen and fibrin than did bovine trypsin. These data suggest that the proteolytic enzyme of H. irritans irritans is more specific to proteins from blood than are the vertebrate digestive enzymes. This enzyme's characteristics may be an adaptation resulting from the feeding behavior of this hematophagous insect.  相似文献   

17.
Phosphoenolpyruvate (PEP) carboxykinase was purified 42-fold with a 25% yield from cell extracts of Ruminococcus flavefaciens by ammonium sulfate precipitation, preparative isoelectric focusing, and removal of carrier ampholytes by chromatography. The enzyme had a subunit molecular mass of ∼66.3 kDa (determined by mass spectrometry), but was retained by a filter having a 100-kDa nominal molecular mass cutoff. Optimal activity required activation of the enzyme by Mn2+ and stabilization of the nucleotide substrate by Mg2+. GDP was a more effective phosphoryl acceptor than ADP, while IDP was not utilized. Under optimal conditions the measured activity in the direction of PEP carboxylation was 17.2 μmol min–1 (mg enzyme)–1. The apparent K m values for PEP (0.3 mM) and GDP (2.0 mM) were 9- and 14-fold lower than the apparent K m values for the substrates of the back reaction (oxaloacetate and GTP, respectively). The data are consistent with the involvement of PEP carboxykinase as the primary carboxylation enzyme in the fermentation of cellulose to succinate by this bacterium. Received: 20 August 1996 / Accepted: 28 December 1996  相似文献   

18.
Summary

A supernatant from eggs of the ruminant nematode Trichostrongylus colubriformis contained an enzyme that was similar to leucine aminopeptidase (LAP), based on hydrolysis of the substrate L-leucine β-naphthylamide to β-naphthylamine. A Michaelis-Menten constant (K m) of 0.155 mM was obtained. Rate of hydrolysis of 16 substrates revealed that L-phenylalanine and L-tyrosine β-naphthylamides were hydrolyzed most readily while seven additional substrates were hydrolyzed at lesser rates. The optimum pH for enzymatic activity was 6.75–7.5. Enzymatic activity was lost by heating the egg supernatant to 60°C for 5 min or freezing at 0°C for 28 days. Addition of millimolar concentrations of the chlorides of zinc, manganese and magnesium to the egg supernatant had no stimulatory effect on enzyme activity while 10 and 100 mM concentrations significantly reduced activity. Ethylenediamine tetraacetic acid at 10?4 M had no effect on enzymatic activity. Activity was inhibited by 10?4 M 1,10-phenanthroline, but the inhibition was reversed by zinc chloride at 10?3 M. Di-isopropylphosphofluoridate at 10?3 M reduced enzymatic activity moderately. Enzyme activity in egg supernatant increased 2.2-fold from 21 days to 60–90 days of a primary infection in the host while a 3.3-fold increase was found in primary versus secondary infections.  相似文献   

19.
Michael Knee 《Phytochemistry》1978,17(8):1257-1260
Examination of the hydrodynamic properties of polygalacturonate fractions from unripe and ripe apple tissue suggested that the wall bound fraction was degraded during ripening but that the soluble fraction was not. Esterification of cell wall preparations with CH2N2 caused solubilisation of polygalacturonate. Acid MeOH caused more extensive solubilization, but this reagent hydrolysed arabinofuranosyl linkages. Both reagents reduced the cohesion of EtOH extracted apple tissue. This effect could also be achieved by treatment with sodium polyphosphate at pH 4 but not by EDTA or chaotropic agents. Free carboxyl groups on polygalacturonate probably maintain cell cohesion through co-operative binding of Ca2+ ions. The integrity of primary wall structure is thought to depend upon non-covalent bonding between cellulose, protein and polygalacturonate.  相似文献   

20.
The gene encoding Lentinula edodes glucoamylase (GLA) was cloned into Saccharomyces cerevisiae, expressed constitutively and secreted in an active form. The enzyme was purified to homogeneity by (NH4)2SO4 fractionation, anion exchange and affinity chromatography. The protein had a correct N-terminal sequence of WAQSSVIDAYVAS, indicating that the signal peptide was efficiently cleaved. The recombinant enzyme was glycosylated with a 2.4% carbohydrate content. It had a pH optimum of 4.6 and a pH 3.4–6.4 stability range. The temperature optimum was 50°C with stability ≤50°C. The enzyme showed considerable loss of activity when incubated with glucose (44%), glucosamine (68%), galactose (22%), and xylose (64%). The addition of Mn++ activated the enzyme by 45%, while Li+, Zn++, Mg++, Cu+, Ca++, and EDTA had no effect. The enzyme hydrolyzed amylopectin at rates 1.5 and 8.0 times that of soluble starch and amylose, respectively. Soluble starch was hydrolyzed 16 and 29 times faster than wheat and corn starch granules, respectively, with the hydrolysis of starch granules using 10× the amount of GLA. Apparent Km and Vmax for soluble starch were estimated to be 3.0 mg/ml and 0.13 mg/ml/min (40°C, pH 5.3), with an apparent kcat of 2.9×105 min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号