首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,β-elimination of l-2-amino-3-(N-methylamino)propionic acid and l-2-amino-3-(N-hydroxyethylamino)propionic acid to yield pyruvate, ammonia, and the corresponding amines. These amino acids also undergo the enzymatic β-replacement reaction with thiols to produce the corresponding S-substituted cysteines. Thus, l-methionine γ-lyase cleaves a C-N bond in addition to C-S, C-Se, and C-O bonds at the β position of amino acids by elimination and replacement reactions. A linear relationship between the reactivity, (log(Vmax/Km) and the pKa value of the conjugated acid of the leaving group has been found for Se-methyl-l-selenocysteine, S-methyl-l-cysteine, and O-methyl-l-serine. However, l-2-amino-3-(N-methylamino)propionic acid has shown lower reactivity than that expected from the pKa value of methylammonium ions.  相似文献   

2.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

3.
An enzyme that catalyzes the synthesis of S-carboxymethyl- l-cysteine from 3-chloro- l-alanine (3-Cl-Ala) and thioglycolic acid was found in Escherichia coli W3110 and was designated as S- carboxymethyl-l-cysteine synthase. It was purified from the cell-free extract to electrophoretic homogeneity and was crystallized. The enzyme has a molecular weight of 84,000 and gave one band corresponding to a molecular weight of 37,000 on SDS-polyacrylamide gel electrophoresis. The purified enzyme catalyzed the β-replacement reactions between 3-CI-AIa and various thiol compounds. The apparent Km values for 3-Cl-Ala and thioglycolic acid were 40 mM and 15.4 mM. The enzyme showed very low activity as to the α,β-elimination reaction with 3-Cl-Ala and l-serine. It was not inactivated on the incubation with 3-Cl-Ala. The absorption spectrum of the enzyme shows a maximum at 412 nm, indicating that it contains pyridoxal phosphate as a cofactor. The N-terminal amino acid sequence was determined and the corresponding sequence was detected in the protein sequence data bank, but no homogeneous sequence was found.  相似文献   

4.
L-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,γ-elimination of O-substituted L-homoserines (i.e., ROCH2CH2CH(NH2)COOH; R = acetyl, succinyl, or ethyl) to produce α-ketobutyrate, ammonia, and the corresponding carboxylate or alcohol, and also their γ-replacement reactions with various thiols to produce the corresponding S-substituted L-homocysteines. The reactivities of O-substituted L-homoserines in α,γ-elimination relative to that of L-methionine were as follows: O-acetyl, 140%; O-succinyl, 17%; and O-ethyl-L-homoserine, 99%. However, the enzyme does not catalyze the synthesis of O-substituted L-homoserines from alcohol or carboxylic acids in a γ-replacement reaction. We have analyzed the α,γ-elimination of O-acetyl-L-homoserine in deuterium oxide by 1H-NMR. The [β-2H, γ-2H]-species of α-ketobutyrate was exclusively formed from O-acetyl-L-homoserine. The enzyme catalyzes deamination of L-vinylglycine to give the identically labeled α-ketobutyrate species. Incubation of the enzyme with O-acetyl-L-homoserine resulted in the appearance of a new absorption band at 480 nm, which was observed also with L-vinylglycine. These results strongly suggest that the α,γ-elimination and γ-replacement reactions of O-acetyl-L-homoserine proceed through the stabilized α-carbanion of a Schiff base between pyridoxal 5'-phosphate and vinylglycine, which has been suggested as the key intermediate of L-methionine γ-lyase-caralyzed reactions of S-substituted L-homocysteines [N. Esaki, T. Suzuki, H. Tanaka, K. Soda and R. R. Rando, FEBS Lett., 84, 309 (1977).  相似文献   

5.
Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300–360 nm under acidic and neutral conditions and at 320–390 nm under alkaline conditions.  相似文献   

6.
Biosynthetic threonine deaminase was purified to an apparent homogeneous state from the cell extract of Proteus morganii, with an overall yield of 7.5%. The enzyme had a s020,w of 10.0 S, and the molecular weight was calculated to be approximately, 228,000. The molecular weight of a subunit of the enzyme was estimated to be 58,000 by sodium dodecyl sulfate gel electrophoresis. The enzyme seemed to have a tetrameric structure consisting of identical subunits. The enzyme had a marked yellow color with an absorption maximum at 415 nm and contained 2 mol of pyridoxal 5′-phosphate per mol. The threonine deaminase catalyzed the deamination of l-threonine, l-serine, l-cysteine and β-chloro-l-alanine. Km values for l-threonine and l-serine were 3.2 and 7.1 mm, respectively. The enzyme was not activated by AMP, ADP and ATP, but was inhibited by l-isoleucine. The Ki for l-isoleucine was 1.17 mm, and the inhibition was not recovered by l-valine. Treatment with mercuric chloride effectively protected the enzyme from inhibition by l-isoleucine.  相似文献   

7.
The mechanism of stereospecific production of l-amino acids from the corresponding 5-substituted hydantoins by Bacillus brevis AJ-12299 was studied. The enzymes involved in the reaction were partially purified by DEAE-Toyopearl 650M column chromatography and their properties were investigated. The conversion of dl-5-substituted hydantoins to the corresponding l-amino acids consisted of the following two successive reactions. The first step was the ring-opening hydrolysis to N-carbamoyl amino acids catalyzed by an ATP dependent l-5-substituted hydantoin hydrolase. This reaction was stereospecific and the N-carbamoyl amino acid produced was exclusively the l-form. N-Carbamoyl-l-amino acid was also produced from the d-form of 5-substituted hydantoin, which suggests that spontaneous racemization occurred in the reaction mixture. In the second step, N-carbamoyl-l-amino acid was hydrolyzed to l-amino acid by an N-carbamoyl-l-amino acid hydrolase, which was also an l-specific enzyme. The ATP dependency of the l-5-substituted hydantoin hydrolase was supposed to be the limiting factor in the production of l-amino acids from the corresponding 5-substituted hydantoins by this bacterium.  相似文献   

8.
7-Keto-8-aminopelargonic acid synthetase (KAPA synthetase) which catalyzes the formation of KAPA from pimelyl CoA and l-alanine, and is involved in biotin biosynthesis, was partially purified from a cell-free extract of Bacillus sphaericus by a procedure involving ammonium sulfate fraction ation, protamine treatment, and DEAE-cellulose column chromatography. The reaction product was bioautographically confirmed to be KAPA. Some properties of the enzyme were also investigated. Among the amino acids, only l-alanine was active as a substrate, condensing with pimelyl CoA, The reaction required pyridoxal phosphate but the other vitamin B6 compounds were inert. Typical inhibitors of pyridoxal phosphate enzymes showed marked inhibition to the reaction. Various amino acids such as l-cysteine, glycine, d-alanine, l-serine, l-histidine, and d-histidine were also found to be inhibitory.  相似文献   

9.
The crude enzyme preparation obtained from culture media of Bacillus cereus Kp 931 was fractionated into three active fractions by Sephadex G-100 gel filtration. These three enzymes had pH optima at between 10.5 and 11.0. One of them, the largest molecular weight species, the enzyme I, was purified extensively. The enzyme catalyzes the release of a number of free amino acids from casein. Large amounts of l-alanine and l-glutamic acid and small amounts of l-leucine, l-serine, glycine, l-cysteic acid and l-arginine were released from oxidized insulin B-chain by the action of the purified enzyme I. It is also suggested that the other two enzymes, II and III, belong to so-called bacterial proteninases.  相似文献   

10.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

11.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

12.
The distribution of tyrosine phenol lyase activity in microorganisms was studied with intact cells in a synthetic reaction mixture containing l-serine and phenol or pyrocatechol. This activity was found in various bacteria, most of which belonged to the Enterobacteriaceae; especially to the genera Escherichia, Proteus and Erwinia. Cells of Erwinia herbicola ATCC 21434 were selected as a promising source of enzyme.

Intact cells of Erwinia herbicola ATCC 21434 prepared from a broth cultured for 24 hr contained markedly high enzymic activity and catalyzed the synthetic reaction of l-tyrosine or 3,4-dihydroxyphenyl-l-alanine (l-dopa) from l-serine and phenol or pyrocatechol in significantly high yields.

Results of the isolation and identification of the products showed that the amino acid synthesized by this enzymatic method was identical with l-tyrosine or l-dopa.  相似文献   

13.
3-Chloro-d-alanine chloride-lyase, which occurs in the cells of Pseudomonas putida CR 1-1, catalyzes not only the α,β-elimination reaction of 3-chloro-d-alanine to form pyruvate, but also its β-replacement reaction in the presence of a high concentration of sodium hydrosulfide to form d-cysteine. Using the β-replacement reaction, the enzymatic synthesis of d-cysteine by resting cells was investigated. The culture conditions for cell production of the bacterium with high d-cysteine-producing activity and the reaction conditions for d-cysteine production were optimized. Under these optimal reaction conditions, 100% of the added 3-chloro-d-alanine could be converted to d-cysteine and, as the highest yield, 20.6 mg of d-cysteine per 1.0 ml of reaction mixture could be synthesized.  相似文献   

14.
A 5-fluorotryptophan-resistant mutant of Brevibacterium flavum, No. 187, accumulated 2.6 g of indole 3-glycerol (InG) in addition to 8.0 g of l-tryptophan per liter in the culture medium. The addition of l-serine to the medium decreased the accumulation of InG and increased that of l-tryptophan up to a concentration of 10.3 g/liter, while the addition of l-tryptophan increased the InG accumulation, suggesting that InG was formed by hydrolysis of indole 3-glycerol phosphate (InGP), the substrate of tryptophan synthase (TS) which catalyzed the final step reaction of tryptophan biosynthesis. Then, in order to examine the mechanism of the InG accumulation, TS was purified from tryptophan auxotroph, TA-60. The reaction mechanism of TS was Ordered Bi Bi with Km’s of 0.63 and 0.038 mm for serine and InGP, respectively. Tryptophan, a product of the TS reaction, inhibited TS competitively with respect to serine and the Ki for tryptophan was estimated to be 2.0 mm. On the other hand, anthranilate synthase (AS), the first enzyme in the tryptophan biosynthetic pathway, was much less sensitive to the feedback inhibition by tryptophan in strain No. 187 than in the wild strain. The tryptophan concentration giving 50% inhibition of AS in strain No. 187 was estimated to be 2.4 mm, almost comparable to that of TS, 7.7 mm. From these results, it was concluded that the accumulation of InG in strain No. 187 would result from the product inhibition of TS by the tryptophan accumulated.  相似文献   

15.
Crystalline l-asparaginase from Escherichia coli A-I-3 hydrolyzed d-asparagine, l- and d-glutamine but at much slower rates than the rate at which it hydrolyzed l-asparagine. Inhibitions by these substrates and related compounds were revealed to be competitive.

d-Asparagine showed the same affinity for the enzyme both in its hydrolysis and inhibition of l-asparagine hydrolysis. l-Aspartate, d-aspartate and α-N-ethylasparagine inhibited various hydrolysis reactions with the respective inhibitor constants. The enzyme was found to hydrolyze β-methylaspartate as well as β-aspartohydroxamate. These data strongly suggest that the hydrolysis occurred at the same active site of the enzyme molecule with relatively low specificity for the configuration of the substrate molecule and the kind of bonding which it hydrolyzes.  相似文献   

16.
Syntheses of various γ-glutamylpeptides were examined taking use of the highly purified γ-glutamylcysteine synthetase from Proteus mirabilis. The accumulation of each peptide was measured after long time incubation, and good formation was observed in the synthesis of peptides of following amino acids, l-cysteine, l-α-aminobutyrate, l-serine, l-homoserine, glycine, l-alanine, l-norvaline, l-lysine, l-threonine, taurine and l-valine. Peptide syntheses were confirmed by analyses of the component amino acids, after hydrolysis of the peptides.

The structure of the glutamylpeptides, especially the peptide-linkage at the γ-carbonyl residue of l-glutamate, was determined by mass spectrometry of the N-trifluoroacetyl methylester derivatives of the glutamylpeptides. Enzymatic synthesis of γ-glutamyl-l-α-aminobutyrate was also confirmed by PMR spectrometry in the comparison with chemically synthesized compound.  相似文献   

17.
We describe here the synthesis of selenium amino acids with O-acetylhomoserine sulfhydrylase, partially purified from baker’s yeast. The enzyme was found to catalyze the synthesis of l-selenocystine and l-selenohomocystine from Na2Se2 with the corresponding acetyl-derivatives of serine and homoserine, respectively. l-Serine-O-sulfate also serves as a substrate of the β-replacement reaction. Na2Se2 is less efficient as a substituent donor than the physiological substrate, NaHS, and inhibits the enzyme at high concentrations. Therefore, limited amounts of Na2Se2 were added to the reaction mixture to increase the yield (50 to 60%). This provides a facile method to produce optically active selenocystine and selenohomocystine.  相似文献   

18.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

19.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

20.
The biosynthetic origin of the amino acid moieties of enduracidin was investigated by feeding experiments with labeled compounds. Results of the incorporation and the distribution of radioactivity into the antibiotic revealed that glycine, l-serine, l-threonine, l-alanine, L-aspartic acid, l-ornithine and l-citrulline were incorporated into the corresponding amino acid moieties. Unique amino acids, enduracididine and its isomer with an imidazolidine ring, were derived from l-arginine, but not histidine. K1 (4-hydroxyphenylglycine) and K2 (3,5-dichloro-K1) moieties were derived from l-tyrosine. 36Cl-Sodium chloride was incorporated into the antibiotic in the early stage of fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号