首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A newly isolated rod-shaped, gram-negative anaerobic bacterium from human feces, named Julong 732, was found to be capable of metabolizing the isoflavone dihydrodaidzein to S-equol under anaerobic conditions. The metabolite, equol, was identified by using electron impact ionization mass spectrometry, 1H and 13C nuclear magnetic resonance spectroscopy, and UV spectral analyses. However, strain Julong 732 was not able to produce equol from daidzein, and tetrahydrodaidzein and dehydroequol, which are most likely intermediates in the anaerobic metabolism of dihydrodaidzein, were not detected in bacterial culture medium containing dihydrodaidzein. Chiral stationary-phase high-performance liquid chromatography eluted only one metabolite, S-equol, which was produced from a bacterial culture containing a racemic mixture of dihydrodaidzein. Strain Julong 732 did not show racemase activity to transform R-equol to S-equol and vice versa. Its full 16S rRNA gene sequence (1,429 bp) had 92.8% similarity to that of Eggerthella hongkongenis HKU10. This is the first report of a single bacterium capable of converting a racemic mixture of dihydrodaidzein to enantiomeric pure S-equol.  相似文献   

2.
Only about one third of humans possess a microbiota capable of transforming the dietary isoflavone daidzein into equol. Little is known about the dietary and physiological factors determining this ecological feature. In this study, the in vitro metabolism of daidzein by faecal samples from four human individuals was investigated. One culture produced the metabolites dihydrodaidzein and O-desmethylangolensin, another produced dihydrodaidzein and equol. From the latter, a stable and transferable mixed culture transforming daidzein into equol was obtained. Molecular fingerprinting analysis (denaturing gradient gel electrophoresis) showed the presence of four bacterial species of which only the first three strains could be brought into pure culture. These strains were identified as Lactobacillus mucosae EPI2, Enterococcus faecium EPI1 and Finegoldia magna EPI3, and did not produce equol in pure culture. The fourth species was tentatively identified as Veillonella sp strain EP. It was found that hydrogen gas in particular, but also butyrate and propionate, which are all colonic fermentation products from poorly digestible carbohydrates, stimulated equol production by the mixed culture. However, when fructo-oligosaccharides were added, equol production was inhibited. Furthermore, the equol-producing capacity of the isolated culture was maintained upon its addition to a faecal culture originating from a non-equol-producing individual.  相似文献   

3.
The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.  相似文献   

4.
A newly isolated rod-shaped, gram-negative anaerobic bacterium from human feces, named Julong 732, was found to be capable of metabolizing the isoflavone dihydrodaidzein to S-equol under anaerobic conditions. The metabolite, equol, was identified by using electron impact ionization mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy, and UV spectral analyses. However, strain Julong 732 was not able to produce equol from daidzein, and tetrahydrodaidzein and dehydroequol, which are most likely intermediates in the anaerobic metabolism of dihydrodaidzein, were not detected in bacterial culture medium containing dihydrodaidzein. Chiral stationary-phase high-performance liquid chromatography eluted only one metabolite, S-equol, which was produced from a bacterial culture containing a racemic mixture of dihydrodaidzein. Strain Julong 732 did not show racemase activity to transform R-equol to S-equol and vice versa. Its full 16S rRNA gene sequence (1,429 bp) had 92.8% similarity to that of Eggerthella hongkongenis HKU10. This is the first report of a single bacterium capable of converting a racemic mixture of dihydrodaidzein to enantiomeric pure S-equol.  相似文献   

5.
An anaerobic incubation mixture of two bacterial strains Eggerthella sp. Julong 732 and Lactobacillus sp. Niu-O16, which have been known to transform dihydrodaidzein to S-equol and daidzein to dihydrodaidzein respectively, produced S-equol from daidzein through dihydrodaidzein. The biotransformation kinetics of daidzein by the mixed cultures showed that the production of S-equol from daidzein was significantly enhanced, as compared to the production of S-equol from dihydrodaidzein by Eggerthella sp. Julong 732 alone. The substrate daidzein in the mixed culture was almost completely converted to S-equol in 24 h of anaerobic incubation. The increased production of S-equol from daidzein by the mixed culture is likely related to the increased bacterial numbers of Eggerthella sp. Julong 732. In the mixture cultures, the growth of Eggerthella sp. Julong 732 was significantly increased while the growth of Lactobacillus sp. Niu-O16 was suppressed as compared to either the single culture of Eggerthella sp. Julong 732 or Lactobacillus sp. Niu-O16. This is the first report in which two metabolic pathways to produce S-equol from daidzein by a mixed culture of bacteria isolated from human and bovine intestinal environments were successfully linked under anaerobic conditions.  相似文献   

6.
The intestinal microbial transformation of daidzein into equol is subject to a wide inter-individual variability. The aim of this study was to investigate in vitro this transformation and to evaluate possible correlations between individual diet and equol production. The transformation of daidzein was investigated in anaerobic batch cultures inoculated with mixed fecal bacteria from 90 volunteers. The daidzein metabolism was monitored by liquid chromatography-mass spectrometry, and a chiral column was used to distinguish equol and dihydrodaidzein enantiomers. The obtained results show that daidzein was unchanged (≈27%) or degraded to equol (≈28%), O-desmethylangolensin (≈12%) or dihydrodaidzein (≈31%). Furthermore, some subjects (≈2%) are able to produce both equol and O-desmethylangolensin. Bacteria represent sub-dominant populations (105–109 cell/g wet faeces) in “slow” equol producers, while higher counts of equol-producing microorganisms (1010–1011 cell/g wet faeces) were found in “quick” equol producers. The in vitro test to evaluate equol-producing status is quick and not invasive, and the obtained results are comparable with those reported in vivo. Indeed, the only enantiomer present in the batch cultures containing equol was the S-form. No significant correlations between equol production, BMI, age and sex were found. It seems that the equol-producer group consumed less fibre, vegetables and cereals, and more lipids from animal sources.  相似文献   

7.

Aim

To identify human subjects harbouring intestinal bacteria that bioactivate daidzein to equol using a targeted PCR‐based approach.

Methods and Results

In a pilot study including 17 human subjects, equol formation was determined in faecal slurries. In parallel, faecal DNA was amplified by PCR using degenerate primers that target highly conserved regions of dihydrodaidzein reductase and tetrahydrodaidzein reductase genes. PCR products of the expected size were observed for six of the eight subjects identified as equol producers. Analysis of clone libraries revealed the amplification of sequences exclusively related to Adlercreutzia equolifaciens in four of the subjects tested positive for equol formation, whereas in three of the equol producers, only sequences related to Slackia isoflavoniconvertens were observed. No amplicons were obtained for one equol‐forming subject, thus suggesting the presence of nontargeted alternative genes. Amplicons were only sporadically observed in the nonequol producers.

Conclusion

The majority of human subjects who produced equol were also detected with the developed PCR‐based approach.

Significance and Impact of the Study

The obtained results shed light on the distribution and the diversity of known equol‐forming bacterial species in the study group and indicate the presence of as yet unknown equol‐forming bacteria.  相似文献   

8.
Equol is metabolized from daidzein, a soy isoflavone, by the gut microflora. In this study, we identified a novel dihydrodaidzein racemase (L-DDRC) that is involved in equol biosynthesis in a lactic acid bacterium, Lactococcus sp. strain 20-92, and confirmed that histidine-tagged recombinant L-DDRC (L-DDRC-His) was able to convert both the (R)- and (S)-enantiomers of dihydrodaidzein to the racemate. Moreover, we showed that recombinant L-DDRC-His was essential for in vitro equol production from daidzein by a recombinant enzyme mixture and that efficient in vitro equol production from daidzein was possible using at least four enzymes, including L-DDRC. We also proposed a model of the metabolic pathway from daidzein to equol in Lactococcus strain 20-92.  相似文献   

9.
Isoflavonoids found in legumes, such as soybeans, are converted by intestinal bacteria to metabolites that might have increased or decreased estrogenic activity. Variation in the effects of dietary isoflavonoids among individuals has been attributed to differences in their metabolism by intestinal bacteria. To investigate this variation, the metabolism of the isoflavonoid daidzein by bacteria from ten fecal samples, provided at different times by six individuals on soy-containing diets, was compared. After anaerobic incubation of bacteria with daidzein for 2 weeks, four samples had metabolized daidzein and six samples had not. Three of the positive samples were from individuals whose microflora had not metabolized daidzein in previous samples. Dihydrodaidzein was observed in one sample, dihydrodaidzein and equol in another sample, and equol and O-desmethylangolensin in two other samples. These results corroborate the hypothesis that the microflora of the gastrointestinal tract of an individual influences the particular isoflavone metabolites produced following consumption.  相似文献   

10.
The Vibrio proteolyticus aminopeptidase is synthesized as a preproprotein and then converted into an active enzyme by cleavage of the N-terminal propeptide. In recombinant Escherichia coli, however, the aminopeptidase is not processed correctly and the less-active form that has the N-terminal propeptide accumulates in the culture medium. Recently, we isolated a novel vibriolysin that was expressed as an active form in E. coli by random mutagenesis; this enzyme shows potential as a candidate enzyme for the processing of aminopeptidase. The E. coli cells were engineered to co-express the novel vibriolysin along with aminopeptidase. Co-expression of vibriolysin resulted in an approximately 13-fold increase in aminopeptidase activity, and a further increase was observed in the form lacking its C-terminal propeptide. The active aminopeptidase was purified from the culture supernatant including the recombinant vibriolysin by heat treatment and ion exchange and hydroxyapatite chromatography with high purity and 35% recovery rate. This purified aminopeptidase effectively converted methionyl-human growth hormone (Met-hGH) to hGH. Thus, this co-expression system provides an efficient method for producing active recombinant V. proteolyticus aminopeptidase.  相似文献   

11.
Equol is a metabolite produced from daidzein by enteric microflora, and it has attracted a great deal of attention because of its protective or ameliorative ability against several sex hormone-dependent diseases (e.g., menopausal disorder and lower bone density), which is more potent than that of other isoflavonoids. We purified a novel NADP(H)-dependent daidzein reductase (L-DZNR) from Lactococcus strain 20-92 (Lactococcus 20-92; S. Uchiyama, T. Ueno, and T. Suzuki, international patent WO2005/000042) that is involved in the metabolism of soy isoflavones and equol production and converts daidzein to dihydrodaidzein. Partial amino acid sequences were determined from purified L-DZNR, and the gene encoding L-DZNR was cloned. The nucleotide sequence of this gene consists of an open reading frame of 1,935 nucleotides, and the deduced amino acid sequence consists of 644 amino acids. L-DZNR contains two cofactor binding motifs and an 4Fe-4S cluster. It was further suggested that L-DZNR was an NAD(H)/NADP(H):flavin oxidoreductase belonging to the old yellow enzyme (OYE) family. Recombinant histidine-tagged L-DZNR was expressed in Escherichia coli. The recombinant protein converted daidzein to (S)-dihydrodaidzein with enantioselectivity. This is the first report of the isolation of an enzyme related to daidzein metabolism and equol production in enteric bacteria.Isoflavones are flavonoids present in various plants and are known to be abundant in soybeans and legumes. These compounds have been called phytoestrogens because their chemical structure is similar to that of the female sex hormone, estrogen. Isoflavones have an ability to bind to estrogen receptors and show protection against or improvement in several sex hormone-dependent diseases, such as breast cancer, prostate cancer, menopausal disorder, lower bone density, and hypertension, due to their weak agonistic or antagonistic effects (1, 19, 27).Daidzein is one of the main soy isoflavonoids produced from daidzin by the glucosidase of intestinal bacteria (17). Equol is a metabolite produced from daidzein by the enterobacterial microflora (5). Recently, equol has attracted a great deal of attention because its estrogenic activity is more potent than that of other isoflavonoids, including daidzein (27). It is well known that individual variation exists in the ability of these enteric microflora to produce equol and that less than half the human population is capable of producing equol after ingesting soy isoflavones (3). Therefore, to increase the production of equol in the enteric environment of each individual, the development of probiotics using safe bacteria which have the ability to produce equol from daidzein is ongoing.Lactococcus strain 20-92 (Lactococcus 20-92; 30a) is an equol-producing lactic acid bacterium isolated from the feces of healthy humans by Uchiyama et al. (30). This bacterium is spherical and Gram positive and is a strain of L. garvieae. The application of Lactococcus 20-92 in probiotics is advantageous because L. garvieae is not pathogenic or toxic to humans.To date, other bacterial strains that are capable of transforming daidzein to dihydrodaidzein or equol have been isolated (9, 21, 22, 23, 29, 32, 36, 37). Daidzein is thought to be metabolized by human intestinal bacteria to equol or to O-desmethylangolensin via dihydrodaidzein and tetrahydrodaidzein (14, 15, 22, 32); however, neither the enzymes involved in the metabolism of daidzein to equol nor even the metabolic pathway has been clarified fully for equol-producing bacteria.In this study, we purified an enzyme from Lactococcus 20-92 that assisted in the conversion of daidzein to dihydrodaidzein. Furthermore, we cloned the L-DZNR gene and expressed the active recombinant enzyme in E. coli.  相似文献   

12.
The original bovine rumen bacterial strain Niu-O16, capable of anaerobically bioconverting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively, is a rod-shaped obligate anaerobic bacterium. After a long-term domestication, an oxygen-tolerant bacterium, which we named Aeroto-Niu-O16 was obtained. Strain Aeroto-Niu-O16, which can grow in the presence of atmospheric oxygen, differed from the original obligate anaerobic bacterium Niu-O16 by various characteristics, including a change in bacterial shape (from rod to filament), in biochemical traits (from indole negative to indole positive and from amylohydrolysis positive to negative), and point mutations in 16S rRNA gene (G398A and G438A). We found that strain Aeroto-Niu-O16 not only grew aerobically but also converted isoflavones daidzein and genistein to DHD and DHG in the presence of atmospheric oxygen. The bioconversion rate of daidzein and genistein by strain Aeroto-Niu-O16 was 60.3% and 74.1%, respectively. And the maximum bioconversion capacity for daidzein was 1.2 and 1.6 mM for genistein. Furthermore, when we added ascorbic acid (0.15%, m/v) in the cultural medium, the bioconversion rate of daidzein was increased from 60.3% to 71.7%, and that of genistein from 74.1% to 89.2%. This is the first reported oxygen-tolerant isoflavone biotransforming pure culture capable of both growing and executing the reductive activity under aerobic conditions.  相似文献   

13.
Daidzein (4',7-dihydroxyisoflavone), a soy phytoestrogen, is a weakly estrogenic compound that may have potential health benefits. Biotransformation of daidzein by the human gut microflora after ingestion converts it to either the highly estrogenic metabolite equol or to nonestrogenic metabolites. We investigated the metabolism of daidzein by colonic microflora of rats. Fecal samples, obtained before and after rats were exposed to daidzein at 250 or 1000 parts per million, were incubated in brain-heart infusion (BHI) broth with daidzein under anaerobic conditions. Samples were removed from the cultures daily and analyzed by high-performance liquid chromatography (HPLC) and mass spectrometry. The fecal bacteria of all rats, regardless of prior daidzein exposure, metabolized the added daidzein to dihydrodaidzein. Both compounds disappeared rapidly from BHI cultures incubated for more than 24 h, but no other daidzein metabolites were detected. Only daidzein and dihydrodaidzein were found in a direct analysis of the feces of rats that had consumed daidzein in their diets. Unlike the fecal bacteria of humans and monkeys, the rat flora rapidly metabolized daidzein to aliphatic compounds that could not be detected by HPLC or mass spectral analysis.  相似文献   

14.
In incubations with 80,000g supernatant of Manduca sexta midgut homogenates, [3H]ecdysone was converted to 3-[3H]epiecdysone and tritiumlabeled highly polar metabolites. C18 SEP-PAK cartridges were found suitable for the separation and purification of the free ecdysteroids and of the highly polar metabolites. Eighty to ninety percent of the metabolites were hydrolyzed by enzyme mixtures (mainly β-glucuronidase, sulphatase, and acid phosphatase) from molluscs, even when β-glucuronidase activity was completely inhibited by D-saccharic acid 1,4-lactone, or various human acid phosphatases (free of sulphatase activity). In each experiment, the hydrolysate contained a much higher proportion of 3-epiecydsone than the free (unconjugated) ecdysteroid fraction. [3H]ecdysone was not metabolized in anaerobic incubations of midgut supernatant that had been filtered through Sephadex G-25. Addition of 5 mM ATP and 5 mM Mg2+ restored the conjugate formation in incubations of Sephadex-filtered supernatant. Four ecdysone conjugates and two 3-epiecdysone conjugates were resolved by reversedphase ion-pair high-performance liquid chromatography. It is concluded that the midgut cytosol contains several ATP:ecdysteriod phosphotransferases. This is the first demonstration of the formation of ecdysteroid phosphoconjugates in a cell-free system.  相似文献   

15.
PURPOSE: To identify the metabolites produced from an isoflavonoid, daidzein, by colonic bacteria of rhesus monkeys. METHODS: The metabolism of daidzein by the fecal bacteria of nine monkeys was investigated. Daidzein was incubated anaerobically with fecal bacteria, and the metabolites were analyzed by use of liquid chromatography and mass spectrometry. RESULTS: The fecal bacteria of all of the monkeys metabolized daidzein to various extents. Dihydrodaidzein was found in cultures of fecal bacteria from two monkeys; dihydrodaidzein and equol were found in cultures from four monkeys; dihydrodaidzein, equol, and an unknown metabolite (MW = 244) were found in cultures from one monkey; and dihydrodaidzein and the unknown metabolite were found in cultures from two monkeys. CONCLUSIONS: Similar to that in humans, variation was evident in the metabolism of isoflavonoids by fecal bacteria from rhesus monkeys. Some metabolites produced by fecal bacteria from monkeys were the same as those produced by fecal bacteria from humans.  相似文献   

16.
An anaerobic fungal isolate, CR4, was isolated from the bovine rumen. The DNA sequence of internal transcribed spacer region 1 showed that CR4 belonged to the genus Caecocmyces. The dry matter digestibility of timothy hay by anaerobic fungal isolate CR4 was determined. The effects of carbohydrate growth substrates on carboxymethyl cellulase (CMCase) and xylanase activities also were examined. The extent of dry matter digestibility of timothy hay was 31% at 6 days’ incubation. The highest specific activity of CMCase in the culture supernatant (SN) fraction was observed in xylose culture. The activity of CMCase was not detected in the SN fraction of cellobiose and xylan or in the cell-bound fraction of all growth substrates. The highest specific activity of xylanase in the SN fraction was observed in glucose culture. These results suggest that fiber-degrading enzyme activities were affected by growth substrates and that CR4 is xylanolytic. Zymogram analysis showed that CR4 produces three CMCases of molecular mass (95, 89, and 64 kDa) and three xylanases of molecular mass (82, 73, and 66 kDa). This is the first demonstration showing the molecular mass of fiber-degrading enzymes of Caecomyces.  相似文献   

17.
Many beneficial effects of probiotics have been reported; however, few have focussed on the effects of Lactobacillus, a probiotic, on the bioconversion of isoflavonoids. We hypothesized that Lactobacillus rhamnosus will modify the metabolism of isoflavone. In an in vitro incubation, L. rhamnosus JCM 2771 produced daidzein from daidzin along with genistein. However, daidzin and genistein were not detected in the incubation solution of daidzein with L. rhamnosus. In the fecal suspension from a male equol producer with daidzein, equol was detected in the presence of a low or high concentration of L. rhamnosus. In the fecal incubation with daidzin, the equol concentration increased with an increasing concentration of L. rhamnosus JCM 2771. L. rhamnosus affected the equol production in the in vitro incubation of daidzein with fecal flora from a male equol producer. We demonstrated for the first time that L. rhamnosus JCM 2771 could produce genistein from daidzin and affect the equol production of fecal flora from a male equol producer in vitro.  相似文献   

18.
大豆食品中通常富含染料木素和大豆苷元等异黄酮素,人和动物肠道中的某些细菌具有将异黄酮素代谢转化为S-雌马酚的能力。到目前为止,S-雌马酚被认为是一种具有潜在健康调节作用的化合物。啮齿类动物均具备产雌马酚的能力,但不同人群之间存在差异,产雌马酚细菌是否存在可能是造成这种差异的重要原因;不同产雌马酚细菌的代谢机制可能不同,并影响机体最终产雌马酚的能力。本文对已知的各种产雌马酚细菌及其细菌的雌马酚合成机制进行综述,以期为进一步了解雌马酚产生个体差异、雌马酚代谢转化效率、体外雌马酚的发酵生产,以及临床产雌马酚细菌的应用等提供理论参考。  相似文献   

19.
The anaerobic rumen fungus, Piromyces communis OTS1, was isolated from a fistulated goat. Its chitinolytic activity in the supernatant of media containing different types of chitin was studied. The fungus grew well in our basal medium, with and without colloidal chitin and chitin powder. N-Acetyl--glucosaminidase activity was not detected in any of the culture media. Chitinase activity, however, was detected in the basal medium with and without colloidal chitin and chitin powder. The extracellular chitinase concentrated from the fungal culture's supernatant by ammonium sulfate (80% saturation) showed highest activity at 40°C and at pH 5.5. In the other cell fractions of P. communis OTS1, N-acetyl--glucosaminidase was not detected, but chitinase activity was detected by 4-methylumbelliferyl reagents. Thus, it was found that the rumen fungus P. communis OTS1 has chitinase activity. Chitinases from the extracellular, cytosolic, and the microsomal fractiòns were mainly of the endo type of chitinase activity.  相似文献   

20.
An enrichment culture that anaerobically degradedm-cresol under sulfate-reducing conditions was obtained from an anoxic aquifer.m-Cresol removal by the culture was greatest when sulfate or thiosulfate served as electron acceptors; sulfite, nitrate, and CO2 were poor substitutes for sulfate. A14C-labeled carboxylated intermediate was detected when the culture was given14C-labeled bicarbonate and nonlabeledm-cresol or nonlabeled bicarbonate and14C-labeledm-cresol. Metabolism of the carboxylated intermediate yielded14C-acetate, which was eventually converted to14CO2. Trace quantities of methylbenzoic acid were also detected as a putativem-cresol intermediate. The importance of this dehydroxylated intermediate in the anaerobic degradation ofm-cresol is unclear, since an amendment of 2-methylbenzoic acid was not degraded by the culture. The stoichiometry of electron acceptor consumption and carbon mass balances confirm thatm-cresol was mineralized by the culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号