首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Several Cd2+ hypersensitive and Hg2+ sensitive mutants of Escherichia coli K-12 were isolated after repeated mutagenesis with nitrosoguanidine. The Cd-hypersensitive mutant, CD17P, could not grow in a chemically defined liquid medium containing 0.5 μm Cd2+, and the growth of Hg-sensitive mutant, HG17P-52, was inhibited by 0.9 μm Hg2+. Thus, CD 17P and HG17P-52 were respectively about 1000 fold and 4 fold more sensitive than the parental strain.

Both mutants were also considerably more sensitive to Zn2+ than their parent, but they did not show any appreciable change in sensitivity to other metals tested. Among the various metabolites and chemicals tested, reducing agents such as cysteine, dithiothreitol and vitamin C showed a protective effect against metal toxicity. Reduced glutathione was effective only against Hg2+. EDTA specifically and efficiently reversed only Cd2+ toxicity.  相似文献   

2.
Derepressed mutant PR-22 was obtained by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) mutagenic treatment of Cellulomonas flavigena PN-120. This mutant improved its xylanolytic activity from 26.9 to 40 U mg−1 and cellulolytic activity from 1.9 to 4 U mg−1; this represented rates almost 2 and 1.5 times higher, respectively, compared to its parent strain growing in sugarcane bagasse. Either glucose or cellobiose was added to cultures of C. flavigena PN-120 and mutant PR-22 induced with sugarcane bagasse in batch culture. The inhibitory effect of glucose on xylanase activity was more noticeable for parent strain PN-120 than for mutant PR-22. When 20 mM glucose was added, the xylanolytic activity decreased 41% compared to the culture grown without glucose in mutant PR-22, whereas in the PN-120 strain the xylanolytic activity decreased by 49% at the same conditions compared to its own control. Addition of 10 and 15 mM of glucose did not adversely affect CMCase activity in PR-22, but glucose at 20 mM inhibited the enzymatic activity by 28%. The CMCase activity of the PN-120 strain was more sensitive to glucose than PR-22, with a reduction of CMCase activity in the range of 20–32%. Cellobiose had a more significant effect on xylanase and CMCase activities than glucose did in the mutant PR-22 and parent strain. Nevertheless, the activities under both conditions were always higher in the mutant PR-22 than in the PN-120 strain. Enzymatic saccharification experiments showed that it is possible to accumulate up to 10 g l−1 of total soluble sugars from pretreated sugarcane bagasse with the concentrated enzymatic crude extract from mutant PR-22.  相似文献   

3.
Mercuric ion interacts with indoles, including tryptophan, to produce complexes whose absorption spectra are broader, less structured, and red-shifted as compared with those of the parent compound. Fluorescence and phosphorescence are totally quenched. In a survey of the effect of transition metal ions on tryptophan fluorescence, the strong quenching by Hg2+ was unique among the uncolored ions. Mercuric nitrate quenched the fluorescence of practically every protein tested, but the sensitivity to quenching varied with the protein. Ovalbumin was the most sensitive to quenching by Hg2+, over 70% of the intrinsic fluorescence being quenched by 2 moles of mercuric ion. Difference absorption spectra show that sulfhydryl groups are attacked by these reagents and Hg2+ is, in addition, perturbing the environment near some tryptophans. In contrast to Hg2+, Zn2+ had negligible effect on protein fluorescence. The emission spectra of proteins which were partly quenched by mercuric ion showed shifts in their maxima to higher or lower wavelengths. This suggests that mercuric ion quenched certain tryptophans more than others, and supports the idea that protein fluorescence is heterogeneous and arises from tryptophans in different microenvironments.  相似文献   

4.
Phospholipase A2 present in a highly purified, potently bactericidal, fraction from rabbit granulocytes produces net bacterial phospholipid degradation during killing of a phospholipase A-less strain of Escherichia coli. In the wild-type parent strain phospholipid breakdown is caused not only by the action of phospholipase A2 but also by phospholipase A1, indicating activation of the most prominent phospholipase of E. coli. This activation occurs as soon as the bacteria are exposed to the granulocyte fraction. Phospholipid breakdown by both phospholipases A is dose dependent but reaches a plateau after 30–60 min and at higher concentrations of the fraction.Phospholipid degradation is accompanied in both strains by an increase in permeability to actinomycin D that is also dose dependent. Even though net hydrolysis of phospholipids is greater in the parent strain than in the mutant, the increase in permeability is the same in the two strains.The addition of 0.04 M Mg2+, after the effects on phospholipids and permeability have become manifest, initiates in both strains the restoration of insensitivity to actinomycin D, the net resynthesis of phospholipids, and the disappearance of monoacylphosphatides and the partial disappearance of free fatty acids that had accumulated. Loss of ability to multiply is not reversed by Mg2+ in either strain. Less than 5 μg of granulocyte fraction causes loss of viability of from 90 to 99% of 1 × 108 microorganisms of both strains. However, at lower concentrations the parent strain is considerably more sensitive to the bactericidal effect of the granulocyte fraction than the mutant strain.  相似文献   

5.
6.
The sensitivity and resistance of some Gram-negative mercury (Hg2+)-sensitive and-resistant strains to chemotherapeutic agents and to disinfectants and preservatives are described.Escherichia coli andPseudomonas aeruginosa strains harboring plasmid pUB 1351 [pUB 367:Tn 501] andE. coli bearing R100-1 were resistant to inorganic mercury and to various antibiotics, but were not more resistant to organic mercury and other preservatives and disinfectants than plasmidless strains.  相似文献   

7.
The metalloregulatory protein MerR which plays important roles in mer operon system exhibits high affinity and selectivity toward mercury (II) (Hg2+). In order to improve the adsorption ability of Saccharomyces cerevisiae for Hg2+, MerR was displayed on the surface of S. cerevisiae for the first time with an α-agglutinin-based display system in this study. The merR gene was synthesized after being optimized and added restriction endonuclease sites EcoR I and Mlu I. The display of MerR was indirectly confirmed by the enhanced adsorption ability of S. cerevisiae for Hg2+ and colony PCR. The hydride generation atomic absorption spectrometry was applied to measure the Hg2+ content in water. The engineered yeast strain not only showed higher tolerance to Hg, but also their adsorption ability was much higher than that of origin and control strains. The engineered yeast could adsorb Hg2+ under a wide range of pH levels, and it could also adsorb Hg2+ effectively with Cd2+ and Cu2+ coexistence. Furthermore, the engineered yeast strain could adsorb ultra-trace Hg2+ effectively. The results above showed that the surface-engineered yeast strain could adsorb Hg2+ under complex environmental conditions and could be used for the biosorption and bioremediation of environmental Hg contaminants.  相似文献   

8.
Summary In the parent strain of Nostoc muscorum, the percentage survival, nitrogenase activity and oxygenic photosynthesis were severely impaired by NaCl (ionic) and sucrose (non-ionic) stresses. Spontaneously occurring NaCl-Resistant mutant clones of the cyanobacterium N. muscorum were found to exhibit differential responses under ionic and non-ionic stresses. One of the mutants (NaCl-R) was found to show resistance in terms of percentage survival, nitrogenase activity and oxygenic photosynthesis under saline (ionic) as well as osmotic (non-ionic) stresses and showing compatible solute strategy for such adaptation. Another mutant (Na+-R) was found to show resistance only to salinity stress and showed an enhanced Na+-efflux system driven by H+. The Na+-R mutant differed from the NaCl-R mutant strain in the sense that it was sucrose sensitive.  相似文献   

9.
Dipicolinic acid synthesis inPenicillium citreoviride strain 3114 was inhibited by Ca2+ ions, but not by Ba2+, Cu2+or Fe2+. Among the metals tested, only Zn2+ inhibited the synthesis of dipicolinic acid and promoted sporulation. None of these metals reversed the inhibition by Ca2+ or Zn2+. A mutant 27133-dpa-ca selected for resistance to feedback inhibition by dipicolinic acid: Ca2+ complex showed cross-resistance to inhibition by dipicolinic acid: Zn2+. Both 3114 and271 33-dpa-ca excreted a number of aliphatic and amino acids during secondary metabolism of dipicolinic acid. In the presence of 1000 ppm of Ca2+, accumulation of citric acid and α-aminoadipic acid was completely inhibited under conditions of inhibition of dipicolinic acid in parent strain 3114 but not in the mutant. Citric acid with or without Ca2+ did not inhibit thede novo synthesis of dipicolinic acid in the strain 3114. In fact, citric acid in the presence of Ca2+ improved significantly rate of dipicolinic acid synthesis. Apart from resistance to feed back inhibition by dipicolinic acid: Ca2+ complex, mutant differed from the parent in three other aspectsviz. (i) dipicolinic acid synthesis was not subject to catabolite repression by glucose, (ii) sporulation as well as dipicolinic acid synthesis was dependent on the presence of Ca2+ ions in the medium and (iii) Mg2+ requirement for the mutant increased three fold. Higher requirement of the Mg2+ could be partially relieved by Ca2+ during secondary metabolism. The results support the inference thatde novo synthesis of dipicolinic acid is regulated through feedback inhibition by dipicolinic acid: Ca2+complex.  相似文献   

10.
Seed is a developmental stage that is highly protective against external stresses in the plant life cycle. In this study, we analyzed toxicity of essential (Cu2+ and Zn2+) and non-essential heavy metals (Hg2+, Pb2+ and Cd2+) on seed germination and seedling growth in the model species Arabidopsis. Our results show that seedling growth is more sensitive to heavy metals (Hg2+, Pb2+, Cu2+ and Zn2+) in comparison to seed germination, while Cd2+ is the exception that inhibited both of these processes at similar concentrations. To examine if toxicity of heavy metals is altered developmentally during germination, we incubated seeds with Hg2+ or Cd2+ only for a restricted period during germination. Hg2+ displayed relatively strong toxicity at period II (12–24 h after imbibition), while Cd2+ was more effective to inhibit germination at period I (0–12 h after imbibition) rather than at period II. The observed differences are likely to be due in part to selective uptake of different ions by the intact seed, because isolated embryos (without seed coat and endosperm) are more sensitive to both Hg2+ and Cd2+ at period I. We assessed interactive toxicity between heavy metals and non-toxic cations, and found that Ca2+ was able to partially restore the inhibition of seedling growth by Pb2+ and Zn2+.  相似文献   

11.
The influence of mercury ions on germination of the resting cells (aplanospores) and on cell division, cell structure, phototaxis, and photosynthesis during the flagellate stage of Hoemotococcus lacustris was investigated. Aplanospores possess a higher tolerance against mercury ions than flagellates. The reason could be seen in the thicker wall of the resting cells which possibly provide a detoxifying effect by immobilisation of Hg2+. This is confirmed by a normal phototactic orientation of flagellates formed from Hg 2+-influenced aplanospores. In contrast, a direct addition of Hg2+ (0.1 to 1 /*M) to the flagellate stage induced an immediate loss of the flagellates to react phototactically, but it was interesting that the inhibition was overcome with time. Obviously, these Hg2+ concentrations influence only the sensory transduction chain, whereas the energetic background is not injured because the velocity of movement and the percentage of motile cells were scarcely affected. This is supported by the high level of the photochemical efficiency of photosystem II, which remains unchanged at 1 uM Hg2+. Recovery of photosynthesis from inhibition by 10/iM Hg2+ suggests a connection between Hg2+ influence and metabolism of the D, protein in the reaction centre of photosystem II. The Hg2+ effect was reversed with time in light, but not in darkness, and streptomycin, an inhibitor of chloroplast protein synthesis, prevented recovery. In flagellates, showing no reactivation, exposure to 10uA/l Hg2+ caused cell swelling, a loss of the flagella, and a disorganisation in structure of the chloroplast and of nucleus.  相似文献   

12.
A mutant of Dunaliella tertiolecta produced by treatment with methyl nitrosoguanidine and designated HL25/8, grew more slowly than the parent strain under all experimental conditions and was conspicuously less tolerant of NaCl. Total photosynthetic activity (C-fixation and O2 evolution) was less in HL25/8 than in the parent strain and was affected differently by [NaCl] in the two strains. Various growth characteristics indicated that the mutant had a greater need than the parent strain for CO2 as distinct from HCO 3 as a source of carbon. Gaseous CO2 extended the range of salt tolerance of the mutant. For example, HL25/8 could not sustain growth at 1.02 M NaCl in a conventional buffered medium containing bicarbonate as the sole carbon source but could do so if the medium were sparged with a CO2/air mixture. The mutant strain has a lower activity of carbonic anhydrase on the cell surface than the parent D. tertiolecta. Moreover, the two strains differ sharply in the responses of their surface carbonic anhydrase activity to salinity of the growth medium. Increasing sodium chloride concentration above 0.17 M raised activity of the enzyme in the parent strain but decreased it in HL25/8. We conclude that the low activity of carbonic anhydrase and its response to salinity can largely, but perhaps not fully, explain the diminished salt tolerance of the mutant. A plate counting method applicable to Dunaliella is described.  相似文献   

13.
Ion exchange or biosorptive processes for metalremoval generally lack specificity in metal bindingand are sensitive to ambient conditions, e.g. pH,ionic strength and the presence of metal chelators. Inthis study, cells of a genetically engineered Escherichia coli strain, JM109, which expressesmetallothionein and a Hg2+ transport system afterinduction were evaluated for their selectivity forHg2+ accumulation in the presence of sodium,magnesium, or cadmium ions and their sensitivity to pHor the presence of metal chelators during Hg2+bioaccumulation. The genetically engineered E.coli cells in suspension accumulated Hg2+effectively at low concentrations (0-20 µM) overa broad range of pH (3 to 11). The presence of 400 mMsodium chloride, 200 mM magnesium chloride, or100 µM cadmium ions did not have a significanteffect on the bioaccumulation of 5 µm Hg2+,indicating that this process is not sensitive to highionic strength and is highly selective against sodium,magnesium, or cadmium ions. Metal chelators usuallyinterfere with ion exchange or biosorptive processes.However, two common metal chelators, EDTA and citrate,had no significant effect on Hg2+ bioaccumulationby the genetically engineered strain. These resultssuggest that this E. coli strain could be usedfor selective removal of Hg2+ from waste water orfrom contaminated solutions which are resistant tocommon treatments. A second potential applicationwould be to remove Hg2+ from Hg2+-contaminated soil, sediment, or particulates bywashing them with a Hg2+ chelator andregenerating the chelator by passing the solutionthrough a reactor containing the strain.  相似文献   

14.
A eukaryotic microalga, Chlorella sp. DT, was transformed with the Bacillus megaterium strain MB1 merA gene, encoding mercuric reductase (MerA), which mediates the reduction of Hg2+ to volatile elemental Hg0. The transformed Chlorella cells were selected first by hygromycin B and then by HgCl2. The existence of merA gene in the genomic DNA of transgenic strains was shown by polymerase chain reaction amplification, while the stable integration of merA into genomic DNA of transgenic strains was confirmed by Southern blot analysis. The ability to remove Hg2+ in merA transgenic strains was higher than that in the wild type. The merA transgenic strains showed higher growth rate and photosynthetic activity than the wild type did in the presence of a toxic concentration of Hg2+. Cultured with Hg2+, the expression level of superoxide dismutase in transgenic strains was lower than that in the wild type, suggesting that the transgenic strains faced a lower level of oxidative stress. All the results indicated that merA gene was successfully integrated into the genome of transgenic strains and functionally expressed to promote the removal of Hg2+.  相似文献   

15.
Wu M  Tang C  Li J  Zhang H  Guo J 《Carbohydrate research》2011,(14):2149-2155
A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32 °C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,501 U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS–PAGE. Its optimal pH and temperature were 3.5 and 65 °C, respectively. It was highly stable at a pH range of 3.5–7.0 and at a temperature of 60 °C and below. The kinetic parameters Km and Vmax, toward locust bean gum and at pH 4.8 and 50 °C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag+ and Hg2+. In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50 °C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h.  相似文献   

16.
A dual‐function fluorescent probe (Probe 1 ) was developed for discriminative detection of Hg2+ and N2H4. Probe 1 could discriminatively detect Hg2+ and N2H4 through two different reaction sites, with the mechanism for Probe 1 for Hg2+ depending on a desulfurization reaction and for N2H4 depending on the Schiff‐base reaction. N2H4 had minimal effect on Hg2+ detection in dimethyl sulfoxide (DMSO)/H2O solution, but Hg2+ could interfere with N2H4 detection in DMSO/buffer solution. Different concentrations of Hg2+ and N2H4 resulted in different blue shades of Probe 1 test strips, and the shade of blue was different with the same concentration of Hg2+ or N2H4, as observed under ultraviolet light at 365 nm wavelength.  相似文献   

17.
The unicellular green algaClosterium moniliferum was sensitive to the action of divalent Ni, Cu, Hg and Cd chlorides both in CO2 fixation and in thymidine incorporation into DNA. At 0.08 ppm, Cd2+ was the most potent inhibitor (86 % inhibition of both processes), followed by Hg2+ and Cu2+, and finally by Ni2+, thymidine incorporation being generally more affected than CO2 fixation.  相似文献   

18.
19.
The effect of equimolar concentrations of Hg2+ and Cd2+ on the whole cell absorption spectra, absorption spectra of the extracted phycocyanin (PC) and fluorescence emission spectra of phycobilisomes (PBS) was investigated in the cells of Anabaena flos-aquae. The PC component of the PBS was found to be extremely sensitive to the Hg2+ rather than the Cd2+ ions. Further, the results showed that Hg2+ and Cd2+ induced decrease in the rate of Hill activity (H2O - DCPIP) was partially restored by the electron donor NH2OH, not by the diphenyl carbazide. Similarly, chlorophyll a fluorescence emission in the presence of metals showed that addition of NH2OH could effectively reverse the metal induced alterations in the fluorescence emission intensity. These results, together, suggested that Hg2+ and Cd2+ caused damage to the photosystems (PS) II reaction center. However, a relatively higher stimulation of the chlorophyll a emission at 695 nm with a red shift of 4.0 nm in the presence of Hg2+, and Cd2+ induced preferential decrease in the emission intensity at 676 nm as compared with the peak at 695 nm were indicative of the differential action of Hg2+ and Cd2+ on the PS II.  相似文献   

20.
《Autophagy》2013,9(5):731-738
Autophagy is essential for prolonging yeast survival during nutrient deprivation; however, this report shows that some autophagy proteins may also be accelerating population death in those conditions. While leucine starvation caused YCA1-mediated apoptosis characterized by increased annexin V staining, nitrogen deprivation triggered necrotic death characterized by increased propidium iodide uptake. Although a Δatg8 strain died faster than its parental strain during nitrogen starvation, this mutant died slower than its parent during leucine starvation. Conversely, a Δatg11 strain died slower than its parent during nitrogen starvation, but faster during leucine starvation. Curiously, although GFP-Atg8 complemented the Δatg8 mutation, this protein made ATG8 cells more sensitive to nitrogen starvation, and less sensitive to leucine starvation. These results were difficult to explain if autophagy only extended life but could be an indication that a second form of autophagy could concurrently facilitate either apoptotic or necrotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号