首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concise, facile, and efficient synthesis of 1-(β-D-galactopyranosyl)thymine-6′-O-triphosphate, a potential probe that can generate reactive dialdehyde for DNA–enzyme cross-linking applications, was described starting from O,O’-bis(trimethylsilyl)thymine. Stannic chloride promoted glycosylation of 1,2,3,4,6-penta-O-acetyl-α-D-galactopyranose with O,O’-bis(trimethylsilyl)thymine, resulting in the formation of 1-(2,3,4,6-O-tetraacetyl-β-D-galactopyranosyl)thymine in 91% yield. Acetyl deprotection using methanolic ammonia afforded 1-(β-D-galactopyranosyl)thymine in 98% yield. The modified one-pot methodology was used to convert 1-(β-D-galactopyranosyl)thymine into 1-(β-D-galactopyranosyl)thymine-6′-O-triphosphate in 72% yield, which involves the formation of 1-(β-D-galactopyranosyl)thymine dichlorophosphoridate using POCl3 as the reagent at the monophosphorylation step followed by reaction with tributylammonium pyrophosphate and hydrolysis of resulting cyclic intermediate.  相似文献   

2.
From the cell wall of a strain of Chlorella vulgaris a sugar was isolated after acid hydrolysis and was identified as 4-O-methyl-D-xylose by the following criteria: (i) mass spectroscopy of its alditol acetate revealed characteristic primary fragments with m/e 117 and m/e 261, and, when one deuterium atom was substituted at C-1, with m/e 262 instead of m/e 261; (ii) after demethylation with BCl3, xylose was identified as its parent sugar by chromatographic methods; (iii) L-iditol: NAD 5-oxidoreductase (sorbitol dehydrogenase) catalyzed the oxidation of its alditol, but not of 4-O-methyl-L-xylitol. 4-O-Methyl-D-xylose amounted to approx. 10% of the cell walls' dry weight or 1.6% of the cells' dry weight.  相似文献   

3.
Conjugal transferability of drug resistance was examined, in eleven Pseudomonas aeruginosa strains which were isolated in Frankfurt. Four R factors were demonstrated from three strains using P. aeruginosa as recipients but they were nontransferable to Escherichia coli K12. Two R factors, i.e., Rms146 and Rms147, mediated resistances to tetracycline (TC), streptomycin (SM), sulfanilamide (SA), kanamycin (KM), lividomycin (LV), gentamicin C complex (GM) and 3′,4′-dideoxykanamycin B (DKB). They mediated the formation of aminoglycoside-inactivating enzymes, i.e., SM phosphotransferase, SM adenylyltransferase, KM and LV phosphotransferase 1, and GM and DKB 6′-N-acetyltransferase. TC resistance conferred by these R factors was due to impermeability of the drug. P. aeruginosa Ps 142 carried two kinds of R factor in one cell, Rms148 (SM) and Rms149 (SM·SA·GM·CPC) (CPC, carbenicillin). Rms148 (SM) was transferable at a high frequency of 10–1 and mediated the formation of SM phosphotransferase. Rms149 mediated the formation of drug-inactivating enzymes, i.e., GM 3-N-acetyltransferase and β-lactamase, but did not inactivate SM. SM resistance was probably due to impermeability of the drug.  相似文献   

4.
A series of new N′-[N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)thiocarbamoyl]-2-[(1-aryl-1H-tetrazol-5-yl)sulfanyl]acetohydrazides 5a5e were synthesized rapidly in high yields from 2-(1-aryl-1H-tetrazol-5-ylsulfanyl)acetohydrazides 3a3e and 2,3,4-tri-O-acetyl-β-d-xylopyranosyl isothiocyanate 4, then 5a5e were converted to a series of new 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)-1,3,4-oxadiazole-2-amines 6a6e and 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)-1,3,4-thiadiazole-2-amines 7a7e, respectively under mercuric acetate/alcohol system or acetic anhydride/phosphoric acid system, then deacetylated in the solution of CH3ONa/CH3OH. All of the novel compounds were characterized by IR, 1H NMR, 13C NMR, MS and elemental analysis. The structures of compounds 2e, 3e, 5a and 5c have been determined by X-ray diffraction analysis. Some of the synthesized compounds displayed PTP1B inhibition and microorganism inhibition.  相似文献   

5.
6-O-Tosyl (1, d.s. 0.94, 80% yield), 6-deoxy-6-iodo (2, d.s. 0.49, 86% yield) and 6-deoxy (3, d.s. 0.49, 50% yield) derivatives of N-acetylchitosan were prepared, and a 13C CP/MAS NMR spectral analysis was performed because no suitable solvent for 3 was found. The 13C signal for CH3 at C-6 in 3 was detected at 18.9 ppm, and that for C-4 in 1–3 appeared at 72.2–72.7 ppm, which is in a higher magnetic field than those (82.5–86.0 ppm) in N-acetylchitosan, 6-O- (ethylthio), 6-O-(benzylthio)- and 6-O-(methylthio)-thiocarbonyl derivatives, chitosan, and chitin. This strongly suggests a different molecular conformation for 1–3.  相似文献   

6.
The pentasaccharide chain of the Forssman antigen, O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→3)-O-(2-acetamido-2-deoxy-β-d-galactopyranosyl)-(1→3)-O-α-d- galactopyranosyl-(1→4)-O-β-d-galactopyranosyl-(1→4)-d-glucopyranose (46) was synthesized by a block synthesis in which an α-d-glycoside linkage between two d-galactose residues was formed. The trisaccharide O-(6-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-α-d-galactopyranosyl)- (1→3)-O-(6-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-(1→3)-6-O-acetyl-2,4-di-O-benzyl- α-d-galactopyranosyl bromide (40) (this was obtained through acetolysis of O-(6-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-α-d-galactopyranosyl)- (1→3)-O-(6-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-(1→3)-1,6-anhydro-2,4-di-O-benzyl-β-d- galactopyranose to the acetyl derivative, followed by reaction with titanium tetrabromide under anhydrous conditions) was condensed with benzyl-4-O-(6-O-benzoyl-2,3-di-O-benzyl-β-d-galactopyranosyl)-2,3,6- tri-O-benzyl-β-d-glucopyranoside were in the presence of silver carbonate and perchlorate. The resulting pentasaccharide was deprotected to give 46.  相似文献   

7.
Antigen 85 (ag85) is a complex of acyltransferases (ag85A–C) known to play a role in the mycolation of the d-arabino-d-galactan (AG) component of the mycobacterial cell wall. In order to better understand the chemistry and substrate specificity of ag85, a trehalose monomycolate mimic p-nitrophenyl 6-O-octanoyl-β-d-glucopyranoside (1) containing an octanoyl moiety in lieu of a mycolyl moiety was synthesized as an acyl donor. Arabinofuranoside acceptors, methyl α-d-arabinofuranoside (2), methyl β-d-arabinofuranoside (3), and methyl 2-O-β-d-arabinofuranosyl-α-d-arabinofuranoside (9) were synthesized to mimic the terminal saccharides found on the AG. The acyl transfer reaction between acyl donor 1 and acceptors 2, 3, and 9 in the presence of ag85C from Mycobacterium tuberculosis (M. tuberculosis) resulted in the formation of esters, methyl 2, 5-di-O-octanoyl-α-d-arabinofuranoside (10), methyl 5-O-octanoyl-β-d-arabinofuranoside (11), and methyl 2-O-(5-O-octanoyl-β-d-arabinofuranosyl)-5-O-octanoyl-α-d-arabinofuranoside (12) in 2 h, 2 h and 8 h, respectively. The initial velocities of the reactions were determined with a newly developed assay for acyltransferases. As expected, the regioselectivity corresponds to mycolylation patterns found at the terminus of the AG in M. tuberculosis. The study shows that d-arabinose-based derivatives are capable of acting as substrates for ag85C-mediated acyl-transfer and the acyl glycoside 1 can be used in lieu of TMM extracted from bacteria to study ag85-mediated acyl-transfer and inhibition leading to the better understanding of the ag85 protein class. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

9.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

10.
The synthesis of 14-(aryl)-14H-naphto[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine-2-yl) acetamidoximes 2ae has been accomplished by reaction of 2-acetonitrile derivatives 1ae with hydroxylamine. Cyclocondensation reaction of precursors 2ae with some elctrophilic species such as ethylorthoformate, acetic anhydride, and methyl-acetoacetate provided the new oxadiazole derivatives 3ae, 4ae, and 5ae, respectively. On the other hand, the reaction of precursors 2ae with 2-chloropropanoyl chloride afforded the new acetimidamides 6ae which evolve under reflux of toluene to the new oxadiazoles 7ae. The synthetic compounds were screened for their anti-xanthine oxidase, anti-soybean lipoxygenase, and cytotoxic activities. Moderate to weak xanthine oxidase and soybean lipoxygenase inhibitions were obtained but significant cytotoxic activities were noted. The most cytotoxic activities were recorded mainly (i) 5a was the most active (IC50?=?4.0?μM) and selective against MCF-7 and (ii) 2a was cytotoxic against the four cell lines with selectivity for MCF-7 and OVCAR-3 (IC50?=?17 and 12?μM, respectively) while 2e is highly selective against OVCAR-3 (IC50?=?10?μM).  相似文献   

11.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

12.
Abstract

An efficient four step process for the preparation of 5′-O-(4,4′-dimethoxytrityl)-N 2-isobutyryl-2′-O-(2-methoxyethyl)-guanosine 1 was developed. Direct 2′-O-alkylation of 2,6-diaminopurine riboside 2 was accomplished via inexpensive and commercially available reagents such as KOH, DMSO and alkyl halides at room temperature in 4–6 hrs. Pure 2′-O-(2-methoxyethyl)-DAPR 3 was isolated by crystallization from methanol. Enzymatic deamination of 3 followed by selective N 2-isobutyrylation and 5′-O-dimethoxytritylation furnished desired 1 in high yield and purity. Fully optimized four step synthetic process has been scaled up to the pilot plant level.  相似文献   

13.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

14.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

15.
The structure of the carbohydrate moiety of GP–I–b which is one out of three glycopeptides isolated from a Pronase digest of the saccharogenic amylase of Rhizopus javanicus sp. 3–46, was investigated by enzymatic and chemical techniques.

Nine moles of mannose followed by one mole of N-acetylglucosamine were released per mole of GP–I–b when it was treated sequentially with purified jack bean α-mannosidase and β-N-acetylglucosaminidase.

Methylation of GP–I–b gave 3, 6-di-O-methyl derivative from the N-acetylglucosamine residues, and 2, 3, 4, 6-tetra-O-methyl, 3, 4, 6-tri-O-methyl and 2, 4-di-O-methyl derivatives from the mannose residues in an approximate ratio of 3: 4: 2.

A smaller glycopeptide (F–l) containing two moles each of mannose and N-acetylglucosamine per mole of asparagine was obtained when GP–I–b was subjected to one step of the Smith degradation. Exhaustive methylation of F–l gave 3, 6-di-O-methyl derivative of Nacetylglucosamine, and 2, 3, 4, 6-tetra-O-methyl and 2, 3, 4-tri-O-methyl derivatives of mannose in a ratio of 1.00: 0.85.

Controlled acetolysis of GP–I–b yielded mannose, O-α-mannosyl-(l→2)-O-α-mannosyl-(l→3)-mannose and a smaller glycopeptide which was resistant to the acetolysis.

From these and previous evidences, the following structure was determined for GP–I–b.  相似文献   

16.
Abstract

5′-Chloro-5′-deoxy-N,3′-O-dibenzoylthymidine (3a), 5′-chloro-5′-deoxy-N4, 3′-O-dibenzoyldeoxycytidine(3b), 5′-chloro-5′-deoxy-N6,3′-O-dibenzoyldeoxyadenosine(3c), N-benzoyl-1-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)thymine (5a) and N6-benzoyl-9-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)adenine (5b) have been synthesized in very high yields using a new efficient reagent, tris(2,4,6-tribrom-ophenoxy)dichlorophosphorane (BDCP). The reaction time was greatly reduced to 5–8 min. NOE data suggested an inversion of configuration at C3-position and thus an SN2 mechanism has been proposed for the chlorination reaction.

  相似文献   

17.
The CHCl3-soluble fraction of the whole plant of Duranta repens showed anti-plasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum, with IC50 values of 8.5?±?0.9 and 10.2?±?1.5?μg/mL, respectively. From this fraction, two new flavonoid glycosides, 7-O-α-d-glucopyranosyl-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (1) and 7-O-α-d-glucopyranosyl(6′′′-p-hydroxcinnamoyl)-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (2), along with five known flavonoids, 3,7,4′-trihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (3), 3,7-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6,4′-trimethoxyflavone (4), 5,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-butenyl)-3,6,4′-trimethoxyflavone (5), 3,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-buten-yl)-5,6,4′-trimethoxyflavone (6), and 7-O-α-d-glucopyranosyl-3,5-dihydroxy-3′-(4′′-acetoxy-3′′-methylbutyl)-6,4′-dimethoxyflavone (7), have been isolated as anti-plasmodial principles. Their structures were deduced by spectroscopic analysis including 1D and 2D NMR techniques. The compounds (1–7) showed potent anti-plasmodial activities against D6 and W2 strains of Plasmodium falciparum, with IC50 values in the range of 5.2–13.5?μM and 5.9–13.1?μM, respectively.  相似文献   

18.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

19.
The physicochemical and biological properties of the new branched cyclomaltooligosaccharides (cyclodextrins; CDs), 2-O-α-d-galactosyl-cyclomaltohexaose (2-O-α-d-galactosyl-α-cyclodextrin, 2-Gal-αCD) and 2-O-α-d-galactosyl-cyclomaltoheptaose (2-O-α-d-galactosyl-β-cyclodextrin, 2-Gal-βCD), were investigated. The formation of inclusion complexes of 2-Gal-CDs with various kinds of guest compounds (clofibrate, cholesterol, cholecalciferol, digitoxin, digitoxigenin, and prostaglandin A1) was examined by a solubility method, and the results were compared with those of non-branched CDs and other 6-O-glycosyl-CDs such as 6-O-α-d-galactosyl-CDs, 6-O-α-d-glucosyl-CDs, and 6-O-α-maltosyl-CDs. The inclusion abilities of 2-Gal-αCD for clofibrate and prostaglandin A1, and 2-Gal-βCD for clofibrate, cholecalciferol, cholesterol, and digitoxigenin were markedly weaker than those of non-branched CD and other 6-O-glycosyl-CDs in each series, probably because of a steric hindrance caused by the α-(1→2)-galactoside linkage. The hemolytic activities of 2-Gal-CDs on human erythrocytes were the lowest among each CD series, and the compounds showed negligible cytotoxicity towards Caco-2 cells up to at least 100 mM.  相似文献   

20.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号