首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intermediate of the aromatization of 4-oxocyclohexanecar-boxylic acid (OHA) to 4-hydroxybenzoic acid (HA) by Coryne-bacterium cyclohexanicum was identified as (+)-4-oxocyclohex-2-enecarboxylic acid (O2A) using a combined system of gas-liquid chromatography (GLC) and a mass spectrometer and polarimeter.  相似文献   

2.
Nitrite reductase (EC 1.6.6.4) has been purified 730-fold from spinach leaves. The enzyme catalyzes the reduction of nitrite to ammonia, with the use of reduced form of methyl viologen and ferredoxin. A stoichiometry of one molecule of nitrite reduced per molecule of ammonia formed has been found. KCN at 2.5×10-4 m inhibited nitrite reductase activity almost completely. Purified enzyme was almost homogeneous by disk electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 61,000 from gel filtration. Nitrite reductase, in the oxidized form, has absorption maxima at 276, 388 and 573 mμ. Both methyl viologen and ferredoxin linked nitrite reductase activities of the enzyme were inactivated on exposure to low ionic strength.  相似文献   

3.
Ferredoxin-sulfite reductase (Fd-SiR) [hydrogen-sulfide: ferredoxin oxidoreductase, EC 1.8.7.1] from spinach leaves has been purified to homogeneity by a new procedure. Subunit analysis by sodium dodecyl sulfate gel electrophoresis yielded a single protein band with a molecular weight of 71,000. Gel electrophoresis in non-denaturing media at different acrylamide concentrations gave a molecular weight of 270,000, suggesting that the native enzyme was composed of four identical subunits. In the presence of 0.2 m sodium chloride, however, gel filtration produced a value of 136,000, indicating the presence of dimer in this ionic environment. A plot of substrate (sulfite) concentration versus enzymatic (Fd-SiR) activity yielded a sigmoidal curve, giving a Hill coefficient (n?) of 2.1. Purified Fd-SiR, in the oxidized form, had absorption maxima at 279, 385, 588 and 714nm. Thus the enzyme has the property of a siroheme-containing protein.  相似文献   

4.
Steady state rates of NADP reduction decline upon commencement of nitrite reduction in reconstituted chloroplast preparations. Similarly, steady state rates of nitrite reduction are lower, but not zero, during concurrent NADP reduction. These results imply that competition for substrate occurs and suggest that nitrite reduction can successfully compete for reduced ferredoxin, even at high rates of NADP reduction.  相似文献   

5.
A series of site-directed mutants of the ferredoxin-dependent spinach nitrite reductase has been characterized and several amino acids have been identified that appear to be involved in the interaction of the enzyme with ferredoxin. In a complementary study, binding constants to nitrite reductase and steady-state kinetic parameters of site-directed mutants of ferredoxin were determined in an attempt to identify ferredoxin amino acids involved in the interaction with nitrite reductase. The results have been interpreted in terms of an in-silico docking model for the 1:1 complex of ferredoxin with nitrite reductase.  相似文献   

6.
The intracellular location of nitrate reductase in spinach leaveswas examined by applying an immunocytochemical method. Thinsections were first treated with immunopurified anti-nitratereductase monospecific antibodies, followed by incubation withcolloidal gold-labelled goat anti-rabbit immunoglobulin G asa marker. The nitrate reductase was specifically located inthe chloroplast. When anti-nitrate reductase antibodies wereomitted, or when pre-immune serum was used no label was observed. (Received October 30, 1986; Accepted December 25, 1986)  相似文献   

7.
Riens B  Heldt HW 《Plant physiology》1992,98(2):573-577
In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3 assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells.  相似文献   

8.
We found two Shiga toxin producing Escherichia coli O157:H7 strains isolated from humans carrying the stx(1) gene with an IS1203-like element (designated as IS1203v(1)). The IS1203v(1) was inserted into the coding region of the A subunit 7 bp upstream from the TGA termination codon, resulting in a loss of two amino acid residues (Ser-Ser) from its C terminus. Toxicity of the Stx1 was confirmed by Vero cell assay. IS1203v(1) hardly affected the stx(1) gene in either its expression or the toxicity of its product.  相似文献   

9.
Methyl viologen-linked nitrite reductase (EC 1.7.7.1), an enzyme which catalyzes the 6-electron reduction of nitrite to ammonia, was isolated from bean roots. The isolated enzyme was homogeneous by disc electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 62,000 by SDS-polyacrylamide gel electrophoresis. In the oxidized form, the enzyme had absorption maxima at 280, 397 (Soret band), 535, and 573 nm (α band), indicating that siroheme is directly involved in the catalysis of nitrite reduction. The absorbance ratios, A397 : A280 and A573 : A397, were 0.3 and 0.39, respectively. Antiserum to spinach leaf nitrite reductase failed to give a positive Ouchterlony result with bean root nitrite reductase, but this antiserum did inhibit the activity of the latter enzyme.  相似文献   

10.
The comparative induction of nitrate reductase (NR) by ambient NO3 and NO2 as a function of influx, reduction (as NR was induced) and accumulation in detached leaves of 8-day-old barley (Hordeum valgare L.) seedlings was determined. The dynamic interaction of NO3 influx, reduction and accumulation on NR induction was shown. The activity of NR, as it was induced, influenced its further induction by affecting the internal concentration of NO3. As the ambient concentration of NO3 increased, the relative influences imposed by influx and reduction on NO3 accumulation changed with influx becoming a more predominant regulant. Significant levels of NO3 accumulated in NO2-fed leaves. When the leaves were supplied cycloheximide or tungstate along with NO2, about 60% more NO3 accumulated in the leaves than in the absence of the inhibitors. In NO3-supplied leaves NR induction was observed at an ambient concentration of as low as 0.02 mm. No NR induction occurred in leaves supplied with NO2 until the ambient NO2 concentration was 0.5 mm. In fact, NR induction from NO2 solutions was not seen until NO3 was detected in the leaves. The amount of NO3 accumulating in NO2-fed leaves induced similar levels of NR as did equivalent amounts of NO3 accumulating from NO3-fed leaves. In all cases the internal concentration of NO3, but not NO2, was highly correlated with the amount of NR induced. The evidence indicated that NO3 was a more likely inducer of NR than was NO2.  相似文献   

11.
Using a novel coupled enzyme activity assay, with a partially purified preparation of spinach leaf nitrate reductase, the apparent Km for NADH was determined as 1.4 μM. These measurements were carried out in the presence of 0.5 mM NAD, which is within the physiological range found in the cytosol of a leaf cell. The results show that an NADH/NAD ratio of 3 × 10?3 is sufficient for a half maximal rate of nitrate reductase.  相似文献   

12.
ATP-Dependent Proteolytic Activity from Spinach Leaves   总被引:4,自引:1,他引:3       下载免费PDF全文
Spinach (Spinacia oleracea CV Bloomsdale Long Standing) leaf cytoplasmic starch phosphorylase and rabbit muscle phosphorylase a were inactivated by incubation with partially purified leaf extract in the presence of ATP and Mg2+. The inactivating factor(s) were heat stable and susceptible to protease attack. Phosphorylase inactivation was prevented by incubation in the presence of p-aminobenzamidine and phenylboronic acid, or prolonged treatment with phenylmethylsulfonyl fluoride or leupeptin for the ATP-stimulated inhibitory activity. Mg2+ -dependent inactivation was prevented by incubation with leupeptin, phenylmethylsulfonyl fluoride, p-aminobenzamidine, or 5′-adenylate. ATP-mediated inactivation of phosphorylase was stimulated by Mg2+ with a reduction in the apparent Km for ATP. Casein-degrading activities with the same properties of ATP and/or Mg2+ stimulation, heat stability, and susceptibility to proteinase inhibitors were detected suggesting that phorphorylase inactivation was due to proteolysis. The activity was greatest at about the time of flowering and also appeared to depend on the light regime.  相似文献   

13.
HIV-1 Nef protein down-regulates several important immunoreceptors through interactions with components of the intracellular sorting machinery. Nef expression is also known to induce modifications of the endocytic pathway. Here, we analyzed the effects of Nef on retrograde transport, from the plasma membrane to the endoplasmic reticulum using Shiga toxin B-subunit (STxB). Nef expression inhibited access of STxB to the endoplasmic reticulum, but did not modify the surface expression level of STxB receptor, Gb3, nor its internalization rate as measured with a newly developed assay. Mutation of the myristoylation site or of a di-leucine motif of Nef involved in the interaction with the clathrin adaptor complexes AP1 and AP2 abolished the inhibition of retrograde transport. In contrast, mutations of Nef motifs known to interact with PACS-1, βCOP or a subunit of the v-ATPase did not modify the inhibitory activity of Nef on retrograde transport. Ultrastructural analysis revealed that Nef was present in clusters located on endosomal or Golgi membranes together with internalized STxB. Furthermore, in strongly Nef-expressing cells, STxB accumulated in endosomal structures that labeled with AP1. Our observations show that Nef perturbs retrograde transport between the early endosome and the endoplasmic reticulum. The potential transport steps targeted by Nef are discussed .  相似文献   

14.
NADH-Nitrate Reductase Inhibitor from Soybean Leaves   总被引:17,自引:15,他引:2       下载免费PDF全文
A NADH-nitrate reductase inhibitor has been isolated from young soybean (Glycine max L. Merr. Var. Amsoy) leaves that had been in the dark for 54 hours. The presence of the inhibitor was first suggested by the absence of nitrate reductase activity in the homogenate until the inhibitor was removed by diethylaminoethyl (DEAE)-cellulose chromatography. The inhibitor inactivated the enzyme in homogenates of leaves harvested in the light. Nitrate reductases in single whole cells isolated through a sucrose gradient were equally active from leaves grown in light or darkness, but were inhibited by addition of the active inhibitor.

The NADH-nitrate reductase inhibitor was purified 2,500-fold to an electrophoretic homogeneous protein by a procedure involving DEAE- cellulose chromatography, Sephadex G-100 filtration, and ammonium sulfate precipitation followed by dialysis. The assay was based on nitrate reductase inhibition. A rapid partial isolation procedure was also developed to separate nitrate reductase from the inhibitor by DEAE-cellulose chromatography and elution with KNO3. The inhibitor was a heat-labile protein of about 31,000 molecular weight with two identical subunits. After electrophoresis on polyacrylamide gel two adjacent bands of protein were present; an active form and an inactive form that developed on standing. The active factor inhibited leaf NADH-nitrate reductase but not NADPH-nitrate reductase, the bacterial nitrate reductase or other enzymes tested. The site of inhibition was probably at the reduced flavin adenine dinucleotide-NR reaction, since it did not block the partial reaction of NADH-cytochrome c reductase. The inhibitor did not appear to be a protease. Some form of association of the active inhibitor with nitrate reductase was indicated by a change of inhibitor mobility through Sephadex G-75 in the presence of the enzyme. The inhibition of nitrate reductase was noncompetitive with nitrate but caused a decrease in Vmax.

The isolated inhibitor was inactivated in the light, but after 24 hours in the dark full inhibitory activity returned. Equal amounts of inhibitor were present in leaves harvested from light or darkness, except that the inhibitor was at first inactive when rapidly isolated from leaves in light. Photoinactivation of yellow impure inhibitor required no additional components, but inactivation of the purified colorless inhibitor required the addition of flavin.

Preliminary evidence and a procedure are given for partial isolation of a component by DEAE-cellulose chromatography that stimulated nitrate reductase. The data suggest that light-dark changes in nitrate reductase activity are regulated by specific protein inhibitors and stimulators.

  相似文献   

15.
The low-activity, phosphorylated form of nitrate reductase (NR) became activated during purification from spinach (Spinacia oleracea) leaves harvested in the dark. This activation resulted from its separation from an approximately 110-kd nitrate reductase inhibitor protein (NIP). Readdition of NIP inactivated the purified phosphorylated NR, but not the active dephosphorylated form of NR, indicating that the inactivation of NR requires its interaction with NIP as well as phosphorylation. Consistent with this hypothesis, NR that had been inactivated in vitro in the presence of NR kinase, ATP-Mg, and NIP could be reactivated either by dephosphorylation with protein phosphatase 2A or by dissociation of NIP from NR.  相似文献   

16.
Short-term exposure of spinach plants to 250 ppb H2S at a photonfluence rate of 35µmol m–2s–1 (within the400–700 nm range) in the ambient air did not affect invitro nitrate reductase activity (NRA) in the leaves. Likewise,H2S exposure did not significantly affect in vivo NRA measuredunder anaerobic conditions. In vivo NRA of untreated plantswas apparently inhibited in the presence of oxygen. However,shortterm H2S exposure increased in vivo "aerobic" NRA up tofive fold of that of untreated plants. H2S induced increaseof in vivo "aerobic" NRA depended on the sulfide concentration.After 24 hours of exposure maximal increase (two to five fold)of in vivo NRA "aerobic" was observed at 220 ppb H2S. It isproposed that H2S inhibited NADH oxidizing enzymes, which resultedin an increase in NADH supply to nitrate reductase (NR) in thepresence of oxygen. It was unlikely that the increase in invivo "aerobic" NRA in sulfide exposed plants was due to an alteredcompetition between mitochondrial respiration and NR since leafrespiration was not affected by an exposure to 250 ppb H2S (Received February 12, 1986; Accepted June 27, 1986)  相似文献   

17.
Tiso M  Tejero J  Kenney C  Frizzell S  Gladwin MT 《Biochemistry》2012,51(26):5285-5292
Plant nonsymbiotic hemoglobins possess hexacoordinate heme geometry similar to that of the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana nonsymbiotic hemoglobins classes 1 and 2 (AHb1 and AHb2, respectively) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for reduction of nitrite to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M(-1) s(-1), respectively, at pH 7.4 and 25 °C. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. The release of free NO gas during the reaction under anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin, and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in species submerged in water, nonsymbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction.  相似文献   

18.
19.
20.
Shiga toxin (Stx)-producing Escherichia coli (STEC), an important cause of hemolytic uremic syndrome, was completely killed by (60)Co irradiation at 1 x l0(3) gray (1 kGy) or higher. However, a low dose of irradiation (0.1-0.3 kGy) markedly induced Stx phage from STEC. Stx production was observed in parallel to the phage induction. Inactivation of Stx phage required a higher irradiation dose than that for bacterial killing. Regarding Stx, cytotoxicity was susceptible to irradiation, but cytokine induction activity was more resistant than Stx phage. The findings suggest that (1). although (60)Co irradiation is an effective means to kill the bacteria, it does induce Stx phage at a lower irradiation dose, with a risk of Stx phage transfer and emergence of new Stx-producing strains, and (2). irradiation differentially inactivates some activities of Stx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号