首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A xyloglucan (MBXG) from the cell walls of etiolated mung bean hypocotyls was characterized by analyzing the fragment oligosaccharides from controlled degradation products of the polymer with acid and enzyme.

Cellobiose, cellotriose and cellotetraose were isolated from the partial acid hydrolyzate of MBXG. Isoprimeverose (6-O-α-d-xylopyranosyl-d-glucopyranose) and a pentasaccharide, α-l-fucosyl-(1 → 2)-β-d-galactosyl-(1 → 2)-α-d-xylosyl-(1 → 6)-β-d-glucosyl-(1 → 4)-d-glucose, were isolated from the hydrolyzate of MBXG with an Asp. oryzae enzyme preparation.  相似文献   

2.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

3.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

4.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

5.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

6.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

7.
The glucomannan isolated from larch holocellulose was hydrolyzed by a purified endo-d-β-mannanase. The products were fractionated by gel filtration on a Polyacrylamide gel in water and partition chromatography on ion exchange resins in 80% ethanol. The following oligosaccharides were isolated and identified: (a) 4-O-β-d-Manp-d-Man, (b) 4-O-β-d-Glcp-d-Man, (c) 4-O-β-d-Glcp-d-Glc, (d) O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man, (e) O-β-dGlcp-(l →4)-O-β-d-Manp-(l →4)-d-Man, (f) O-β-d-Manp-(l →4)-Oβ-d-Glcp-(l →4)-d-Man, (g) O-β-d-Manp-(l →4)-O-[α-d-Galp-(l →6)]-d-Man, (h) O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-d-Man, and (i) O-β-d-Glcp-(1 →4)-O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man.  相似文献   

8.
Hepta-O-acetyl-2-0-β-l-quinovopyranosyl-α-d-glucose (VI) and hepta-O-acetyl-2-O-α-l-quinovopyranosyl-β-d-gIucose (VIII) were prepared by the coupling of 2,3,4-tri-O-acetyl-α-l-quinovopyranosyl bromide (IV) with l,3,4,6-tetra-O-acetyl-α-D-glucose (V) in the presence of mercuric cyanide and mercuric bromide in absolute acetonitrile.

Similarly, hepta-O-acetyW-O-α-l-quinovopyranosyl-α-d-galactose (X) and hepta-O-acetyl-2-O-β-L-quinovopyranosyl-α-d-galactose (XI) were prepared by the reaction of IV with 1,3,4,6-tetra-O-acetyl-α-d-galactose (IX).

Removal of the protecting groups of VI, VIII, X and XI afforded the corresponding disaccharides. On treatment with hydrogen bromide, VI, VIII, X and XI gave the corresponding acetobromo derivatives.  相似文献   

9.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

10.
During an examination of components contributing to the bitter taste of asparagus bottom cut (Asparagus officinalis L.), two new furostanol saponins were isolated from roots extractives. Their chemical structures were established as 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranoside 26-O-β-d-glucopyranoside and 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2) [β-d-xylopyranoxyl (1→4)]-β-d-glucopyranoside 26-O-β-d-glucopyranoside respectively.  相似文献   

11.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

12.
A new glucuronide saponin (1) was isolated as its methyl ester (2) from the leaves of Camellia sinensis var. sinensis. On the basis of its spectral data and the results of chemical degradation, the structure was elucidated to be 3-O-1{β-d-galactopyranosyl(l → 2)-[β-d-xylopyranosyl(1 → 2)-α-l-arabinopyranosyl(1 → 3)]-β-d-glucuronopyranosyl}-21-O-cinnamoyl-16,22–di-O-acetylbarringtogenol C.  相似文献   

13.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

14.
A glucomannan isolated from konjac flour was hydrolyzed with commercially available crude and purified cellulases. The following oligosaccharides were isolated from the hydrolyzate and identified: (a) 4-O-β-d-mannopyranosyl-d-monnose (b) 4-O-β-d-mannopyranosyl-d-glucose (c) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (d) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (e) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (f) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (g) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (h) 4-O-β-d-glucopyranosyl-d-glucose(cellobiose) (i) 4-O-β-d-glucopyranosyl-d-mannose (epicellobiose) (j) O-β-d-glucopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose. Of these saccharides, (h), (i) and (j) were isolated from the hydrolyzate by purified cellulase, while (g) was isolated from the hydrolyzate by crude cellulase. The others were all present in the hydrolyzates both by crude and by purified cellulases.  相似文献   

15.
Rubusoside derivatives by transgalactosylation of various β-galactosidases were isolated and their structures were analyzed. Escherichia coli β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→6)-β-d-glucosyl]-steviol (RGal-2). Bacillus circulans β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-steviol (RGal-1a) in the early stage of the reaction and then produced 13-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (RGal-1b). With decreasing the amount of these products (RGal-1a and RGal-1b), RGal-2 was produced.  相似文献   

16.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

17.
To investigate the substrate specificity of β-l-rhamnosidase, the following β-l-rhamnopyranosides were synthesized: 1-(β-l-rhamnopyranosyl)-dl-glycerol (1), methyl β-l-rhamnopyranoside (2), methyl 2-O-(β-l-rhamnopyranosyl)-β-d-glucopyranoside (3) and methyl 2-O-β(β-l-rhamnopyranosyl)-α-l-arabinopyranoside (4). The synthesis of 3 was performed using l-quinovose with neighboring group participation, which lead stereoselectively to the β-l-quinovoside. The 2-OH of the l-quinovo-unit was selectively deblocked, oxidized to the keto group, and then stereoselectively reduced, whereby 3 was produced.  相似文献   

18.
A plant glycosphingolipid, O-(β-d-mannopyranosyl)-(l → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 1, and the stereoisomer, O-(α-d-mannopyranosyl)-(1 → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 6, were synthesized in a stereo- and regio-controlled way.  相似文献   

19.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

20.
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号