首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polygalacturonase was found in a culture filtrate of Aureobasidium pullulans. The enzyme was purified and obtained in crystalline form with 10% recovery. The crystalline enzyme was a homogeneous protein by analyses by sedimentation and electrophoresis. The enzyme was most active around pH 4.5, and stable in the pH range of 4 to 6. Its molecular weight was 42,000 and its isoelectric point was pH 6.0. The enzyme was an endo-polygalacturonase, catalyzing the cleavage of glycosidic bonds of polygalacturonic acid at random.

The enzyme had less protopectinase activity than those of the endo-polygalacturonases that were isolated as protopectin-solubilizing enzymes from Trichosporon penicillatum, Kluyveromyces fragilis, and Galactomyces reessii. Some characteristics were compared with the endo-polygalacturonases, which have potent protopectinase activity.  相似文献   

2.
We found the occurrence of 4-hydroxybenzoate decarboxylase in Enterobacter cloacae P240, isolated from soils under anaerobic conditions, and purified the enzyme to homogeneity. The purified enzyme was a homohexamer of identical 60 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 4-hydroxybenzoate without requiring any cofactors. Its K m value for 4-hydroxybenzoate was 596 μM. The enzyme also catalyzed decarboxylation of 3,4-dihydroxybenzoate, for which the K m value was 6.80 mM. In the presence of 3 M KHCO3 and 20 mM phenol, the decarboxylase catalyzed the reverse carboxylation reaction of phenol to form 4-hydroxybenzoate with a molar conversion yield of 19%. The K m value for phenol was calculated to be 14.8 mM. The gene encoding the 4-hydroxybenzoate decarboxylase was isolated from E. cloacae P240. Nucleotide sequencing of recombinant plasmids revealed that the 4-hydroxybenzoate decarboxylase gene codes for a 475-amino-acid protein. The amino acid sequence of the enzyme is similar to those of 4-hydroxybenzoate decarboxylase of Clostridium hydroxybenzoicum (53% identity), VdcC protein (vanillate decarboxylase) of Streptomyces sp. strain D7 (72%) and 3-octaprenyl-4-hydroxybenzoate decarboxylase of Escherichia coli (28%). The hypothetical proteins, showing 96–97% identities to the primary structure of E. cloacae P240 4-hydroxybenzoate decarboxylase, were found in several bacterial strains.  相似文献   

3.
Two forms of formaldehyde dismutase distinguishable on disc-gel electrophoresis were isolated from the cell-free extract of Pseudomonas putida F61. The mobilities on SDS-gel electrophoresis and the NH2-terminal amino acids (arginine) of the two enzyme species were identical. The COOH-terminal amino acid sequence was found to be -Ser-Gly-Lys. The enzyme was inhibited by carbonyl, reducing and sulfhydryl reagents.

The enzyme catalyzed the cross-dismutation reaction between formaldehyde and an aldehyde, such as propionaldehyde, acrolein, butyraldehyde, isobutyraldehyde and crotonaldehyde. The enzyme also catalyzed a coupled oxidoreduction between an alcohol and an aldehyde (RCH2OH+R'CHO RCHO +R'CH2OH) without addition of an electron acceptor. Aliphatic alcohols and aldehydes of C2 to C4 were utilized in this reaction.  相似文献   

4.
The cloned gene was composed of 1638 bp for coding plus promoter like and SD-like sequences ahead of it. The deduced amino acid sequence had high similarity with known β-amylases. The N-terminal sequence of the cloned β-amylase seemed to be a signal peptide. The gene was introduced into Bacillus subtilis 1A289 using pHY300PLK as a vector and the expressed protein was recovered from the culture media. The enzyme fraction produced was divided into two components upon the DEAE column chromatography. The amino acid sequence of one fraction (FrI) was the same as the mature enzyme, and the other (FrII) lacked the N-terminal amino acid residue (Ala) of the mature enzyme. The kinetic parameters of the hydrolysis catalyzed by the enzyme component FrI were measured, and the subsite affinities of the enzyme were evaluated. In conclusion, it was shown that the recombinant enzyme was the same as the mature enzyme functionally and proteochemically.  相似文献   

5.
Kinetics of the acyl transfer catalyzed by Xanthomonas α-amino acid ester hydrolase was studied. The enzyme hydrolyzed d-α-phenylglycine methyl ester (d-PG-OMe) to give equimolar amounts of d-α-phenylglycine and methanol. With d-PG-OMe as an acyl donor and 7-amino-3-deacetoxy-cephalosporanic acid (7-ADCA) as an acyl acceptor, the enzyme transferred the acyl group from d-PG-OMe to 7-ADCA in competition with water. The addition of amine nucleophiles (7-ADCA and 6-aminopenicillanic acid) decreased the molecular activity (ko) of the enzyme-catalyzed hydrolysis of d-PG-OMe, whereas it did not alter the Michaelis constant (KM), and plots of l/ko against the initial concentration of a nucleophile (no) gave a straight line. These results support the assumptions that the overall process for hydrolysis and acyl transfer proceeds through a common acyl-enzyme intermediate, that the acylation step of the enzyme is rate-limiting, and that the transfer competes with the hydrolysis of the acyl donor.  相似文献   

6.
A bacterium which degrades urethane compounds was isolated and identified as Rhodococcus equi strain TB-60. Strain TB-60 degraded toluene-2,4-dicarbamic acid dibutyl ester (TDCB) and accumulated toluene diamine as the degradation product. The enzyme which cleaves urethane bond in TDCB was strongly induced by acetanilide. The purified enzyme (urethane hydrolase) was found to be homogeneous on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The molecular weight was estimated to be 55 kDa. The optimal temperature and pH were 45°C and 5.5, respectively. The enzyme hydrolyzed aliphatic urethane compound as well as aromatic ones. The activity was inhibited by HgCl2, p-chrolomercuribenzoic acid, and phenylmethylsulfonyl fluoride, suggesting that cysteine and/or serine residues play an important role in the activity. The enzyme catalyzed the hydrolysis of anilides, amides, and esters as well as TDCB. It was characterized as a novel amidase/esterase, differing in some properties from other known amidases/esterases.  相似文献   

7.
Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (NAD-GDH; EC 1.4.1.3) from Amphibacillus xylanus DSM 6626 was enriched 100-fold to homogeneity. The molecular mass was determined by native polyacrylamide electrophoresis and by gel filtration to be 260 kDa (±25 kDa); the enzyme was composed of identical subunits of 45 (±5) kDa, indicating that the native enzyme has a hexameric structure. NAD-GDH was highly specific for the coenzyme NAD(H) and catalyzed both the formation and the oxidation of glutamate. Apparent K m -values of 56 mM glutamate, 0.35 mM NAD (oxidative deamination) and 6.7 mM 2-oxoglutaric acid, 42 mM NH4Cl and 0.036 mM NADH (reductive amination) were measured. The enzyme was unusually resistant towards variation of pH, chaotropic agents, organic solvents, and was stable at elevated temperature, retaining 50% activity after 120 min incubation at 85°C.  相似文献   

8.
The protein converting dimethylallylpyrophosphate (DMAPP) into isoprene in vitrowas isolated and purified 3000-fold from leaves of berry-bearing poplar (Populus deltoidesMarsh.). As the enzyme was purified, its specific activity increased and at the final stage reached 266 nmol/(min mg protein). The enzyme was eluted by anion-exchange chromatography in a 120–170 mM NaCl gradient and by chromatography on the hydroxyapatite column in 170 mM sodium phosphate. The active molecular weight of the protein determined by gel filtration was 100–110 kD. As the enzyme was purified, the K Mvalue increased from 2 to 9 mM. A parallelism isoprene emission from DMAPP and an increase in the specific activity of the enzyme as it was purified proved that the enzyme catalyzed isoprene emission.  相似文献   

9.
An NADP-dependent 7β-hydroxysteroid dehydrogenase was purified 11.5-fold over the activity in crude cell extracts prepared from Peptostreptococcus productus strain b-52, by using Sephadex G-200 and DEAE-cellulose column chromatography. 7β-Dehydrogenation was the sole transformation of bile acids catalyzed by the partially purified enzyme. The enzyme preparation (spec. act. 2.781 IU per mg protein) had an optimum pH of 9.8. Lineweaver-Burk plots showed a Michaelis constant (Km) value of 0.05 mM for 3α,7β-dihydroxy-5β-cholanic acid whereas higher values were obtained with 3α,7β-dihydroxy-5β-cholanoyl glycine (0.20 mM), and 3α,7β-dihydroxy-5β-cholanoyl taurine (0.26 mM). NADP but not NAD could function as an electron acceptor, and has a Km value of 0.30 mM. A molecular weight of 64 000 was determined by SDS-polyacrylamide gel electrophoresis. The addition of 0.4 mM of either bile acid to the growth medium suppressed not only cell growth, but also the enzyme yield.  相似文献   

10.
An isoeugenol-degrading enzyme was purified to homogeneity from Pseudomonas putida IE27, an isoeugenol-assimilating bacterium. The purified enzyme was a 55 kDa monomer and catalyzed the initial step of isoeugenol degradation, the oxidative cleavage of the side chain double-bond of isoeugenol, to form vanillin. Another reaction product of isoeugenol degradation besides vanillin was identified to be acetaldehyde. The values of Km and k cat for isoeugenol were 175 μM and 5.18 s–1, respectively. The purified enzyme catalyzed the incorporation of an oxygen atom from either molecular oxygen or water into vanillin, suggesting that the isoeugenol-degrading enzyme is a kind of monooxygenase. The gene encoding the isoeugenol-degrading enzyme and its flanking regions were isolated from P. putida IE27. The amino acid sequence of the enzyme was similar to those of lignostilbene-α,β-dioxygenases, carotenoid monooxygenases and 9-cis-epoxycarotenoid dioxygenases.  相似文献   

11.
This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45–90 min). The enantiomeric excess value of product (eep ) and enantiomeric excess value of substrate (ees ) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives.  相似文献   

12.
Aspartate-β-semialdehyde dehydrogenase (ASADH) from Escherichia coli is inhibited by l- and d-cystine, and by other cystine derivatives. Enzyme inhibition is quantitatively reversed by addition of dithiothreitol (DTT), dithioerythrytol, β-mercaptoethanol, di-mercaptopropanol or glutathione to the cystine-inactivated enzyme. Cystine labeling of the enzyme is a pH dependent process and is optimal at pH values ranging from 7.0 to 7.5. Both the cysteine incorporation profile and the inactivation curve of the enzyme as a function of pH suggest that a group(s) with pKa of 8.5 could be involved in cystine binding. Stoichiometry of the inactivation reaction indicates that one cysteine residue from the enzyme subunit is reactive against cystine, as found by direct incorporation of radioactive cystine into the enzyme and by free-thiol titration of the enzyme with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) before and after the cystine treatment. One mole of cysteine is released from each mol of cystine after reaction with the enzyme. ASA, NADP and NADPH did not prevent cystine inhibition. The [35S]cysteine-labelled enzyme can be visualized after electrophoresis in polyacrylamide gels and further detection by autoradiography. After pepsin treatment of the [35S]cysteine-inactivated enzyme, a main radioactive peptide was isolated by HPLC. The amino acid sequence of this peptide was determined as FVGGN(Cys)2TVSL, thus demonstrating that the essential 135Cys is the amino acid residue modified by the treatment with cystine.  相似文献   

13.
β-Carbolines are indole alkaloids that occur in plants, foods, and endogenously in mammals and humans, and which exhibit potent biological, psychopharmacological and toxicological activities. They form from naturally-occurring tetrahydro-β-carboline alkaloids arising from tryptophan by still unknown way and mechanism. Results in this research show that heme peroxidases catalyzed the oxidation of tetrahydro-β-carbolines (i.e. 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid) into aromatic β-carbolines (i.e. norharman and harman, respectively). This oxidation followed a typical catalytic cycle of peroxidases through redox intermediates I, II, and ferric enzyme. Both, plant peroxidases (horseradish peroxidase, HRP) and mammalian peroxidases (myeloperoxidase, MPO and lactoperoxidase, LPO) catalyzed the oxidation in an efficient manner as determined by kinetic parameters (VMAX and KM). Oxidation of tetrahydro-β-carbolines was inhibited by peroxidase inhibitors such as sodium azide, ascorbic acid, hydroxylamine and excess of H2O2. The formation of aromatic β-carbolines by heme peroxidases can help to explain the presence and activity of these compounds in biological systems.  相似文献   

14.
Endopolygalacturonase I [EC 3.2.1.15], the major component of endopolygalacturonases causing silver-leaf symptoms, was purified from culture liquids of Stereum purpureum by column chromatographies on CM-52 and Sephadex G-100. The purified enzyme was homogeneous on Polyacrylamide gel electrophoresis and ultracentrifugation. The sedimentation coefficient (S20,W) was determined to be 3.21 S, and the molecular weight was estimated to be 40,000 by gel filtration, 41,000 by SDS-polyacrylamide gel electrophoresis and 44,000 by sedimentation equilibrium. The enzyme had an isoelectric point of pH 8.5. The optimal pH of the enzyme was 3.5 for trigalacturonic acid, 4.0 for tetragalacturonic acid, and 4.5 for pectic acid. The enzyme was stable in the range of pH 4.0 to 9.0 and up to 70%C for 30 min. The amount of the enzyme which was required to induce silver-leaf symptoms on apple trees was 20 μg/tree.  相似文献   

15.
Amino acid oxidases, which enantiospecifically catalyze the oxidative deamination of either D‐ or L‐amino acids, belong to the class of oxidoreductases functioning with a tightly bound cofactor. This cofactor favors industrial applications of D‐amino acid oxidases (D‐AAO). Hence, the enzyme is very important for the industrial application in the purification and determination of certain amino acids. In developing the enzyme‐catalyzed reaction for large‐scale production, modeling of the reaction kinetics plays an important role. Therefore, the subject of this study was the kinetics of the oxidative deamination, a very complex reaction system, which is catalyzed by D‐AAO from Arthrobacter protophormiae using its natural substrate D‐methionine and the aromatic amino acid 3,4‐dihydroxyphenyl‐D‐alanine (D‐DOPA). The kinetic parameters determined by the measurement of the initial rate and nonlinear regression were verified in batch reactor experiments by comparing calculated and experimental concentration‐time curves. It was found that the enzyme is highly specific towards D‐methionine (Km = 0.24 mM) and not as specific to D‐DOPA as a substrate (Km = 9.33 mM). The enzyme activity towards D‐methionine ( = 3.01 U/mL) was approx. seven times higher than towards D‐DOPA ( = 20.01 U/mL). The enzyme exhibited no activity towards L‐methionine and L‐DOPA. Batch and repetitive batch experiments were performed with both substrates in the presence and in the absence of catalase for hydrogen peroxide decomposition. Their comparison made it possible to conclude that hydrogen peroxide has no negative influence on the enzyme activity.  相似文献   

16.
A fungus with the ability to utilize a metal-cyano compound, tetracyanonickelate (II) {K2[Ni (CN)4]; TCN}, as its sole source of nitrogen was isolated from soil and identified as Fusarium oxysporum N-10. Both intact mycelia and cell-free extract of the strain catalyzed hydrolysis of TCN to formate and ammonia and produced formamide as an intermediate, thereby indicating that a hydratase and an amidase sequentially participated in the degradation of TCN. The enzyme catalyzing the hydration of TCN was purified approximately ten-fold from the cell-free extract of strain N-10 with a yield of 29%. The molecular mass of the active enzyme was estimated to be 160 kDa. The enzyme appears to exist as a homotetramer, each subunit having a molecular mass of 40 kDa. The enzyme also catalyzed the hydration of KCN, with a cyanide-hydrating activity 2 × 104 times greater than for TCN. The kinetic parameters for TCN and KCN indicated that hydratase isolated from F. oxysporum was a cyanide hydratase able to utilize a broad range of cyano compounds and nitriles as substrates. Received: 9 August 1999 / Received revision: 13 September 1999 / Accepted: 24 September 1999  相似文献   

17.
A novel (R)-amine transaminase, which catalyzed (R)-enantioselective transamination of chiral amine, was purified to homogeneity from Arthrobacter sp. KNK168 (FERM BP-5228). The molecular mass of the enzyme was estimated to be 148 kDa by gel filtration and 37 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting a homotetrameric structure. The enzyme catalyzed transamination between amines and pyruvate stereo-specifically. The reaction on 1-methylbenzylamine was (R)-enantioselective. Pyruvate was the best amino acceptor, but the enzyme showed broad amino acceptor specificity for various ketone and aldehyde compounds. The apparent K ms for (R)-1-methylbenzylamine and pyruvate were 2.62 and 2.29 mM, respectively. The cloned gene of the enzyme consists of an open reading frame (ORF) of 993 bp encoding a protein of 330 amino acids, with a calculated molecular weight of 36,288. The deduced amino acid sequence was found to be homologous to those of the aminotransferases belonging to fold class IV of pyridoxal-5′-phosphate-dependent enzymes, such as branched-chain amino acid aminotransferases.  相似文献   

18.
Marine bacterium Reinekea sp. KIT-YO10 was isolated from the seashore of Kanazawa Port in Japan as a seaweed-degrading bacterium. Homology between KIT-YO10 16S rDNA and the 16S rDNA of Reinekea blandensis and Reinekea marinisedimentorum was 96.4 and 95.4%, respectively. Endo-1,4-β-D-mannanase (β-mannanase, EC 3.2.1.78) from Reinekea sp. KIT-YO10 was purified 29.4-fold to a 21% yield using anion exchange chromatography. The purified enzyme had a molecular mass of 44.3?kDa, as estimated by SDS-PAGE. Furthermore, the purified enzyme displayed high specificity for konjac glucomannan, with no secondary agarase and arginase activity detected. Hydrolysis of konjac glucomannan and locust bean gum yielded oligosaccharides, compatible with an endo mode of substrate depolymerization. The purified enzyme possessed transglycosylation activity when mannooligosaccharides (mannotriose or mannotetraose) were used as substrates. Optimal pH and temperature were determined to be 8.0 and 70?°C, respectively. It showed thermostability at temperatures from 20 to 50?°C and alkaline stability up to pH 10.0. The current enzyme was thermostable and thermophile compared to the β-mannanase of other marine bacteria.  相似文献   

19.
20.
Dehydrodicaffeic acid dilactone (DDACD) was found in a cultured mushroom by screening for catechol-O-methyltransferase inhibitors. The enzyme which converts two molecules of caffeic acid to DDCAD has been extracted from the mushroom and purified and the enzyme reaction has been studied. It was markedly inhibited by reducing agents, such as NADPH, NADH, glutathione and ascorbic acid but stimulated by Fe3+, Fe2+, Co2+, Ni2+, Cu2+, Cu+ and Zn2+ ions. Sodium diethyldithiocarbamate and sodium cyanide known to be copper chelating agents inactivated the enzyme, but activity was restored by addition of Cu2+ or Cu+. Although the enzymic reaction did not occur under anaerobic conditions, 18O-oxygen was not incorporated into DDCAD. o-Diphenol oxidase catalyzed DDCAD formation from caffeic acid and the DDCAD-forming enzyme catalyzed the formation of DOPAchrome from DOPA. Thus, the DDCAD-forming enzyme is a type of o-diphenol oxidase. Peroxidase and hydrogen peroxide produced DDCAD from caffeic acid.

On the other hand, DDCAD was non-enzymatically synthesized from caffeic acid in the presence of CuCl2 in 64% yield. In both enzymic and non-enzymic syntheses, both (+)- DDCAD and (?)-DDCAD were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号