首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Matsui  K Sato  H Enei    Y Hirose 《Applied microbiology》1977,34(4):337-341
An inosine-producing strain of Bacillus subtilis was mutated to resistance against the antagonist of glutamine, DL-methionine sulfoxide. Among the mutants derived, guanosine producers were observed frequently. The best strain, 14119, produced 9.6 g of guanosine per liter at a weight yield of 12% from consumed sugar. Inosine production decreased concomitantly. When resistance was increased further by exposure to higher doses of DL-methionine sulfoxide, another strain, AG169, was obtained that did not excrete inosine but produced increased amounts of xanthosine. In these strains, the specific activity of 5'-nucleotidase was lower and that of inosine 5'-monophosphate (IMP) dehydrogenase was higher than the parent strain. It is speculated that the metabolic flow from IMP to xanthosine 5'-monophosphate proceeds more smoothly than that from IMP to inosine and yields more xanthosine and guanosine.  相似文献   

2.
Evidence is presented here confirming the identification of guanosine 3′: 5′-monophosphate (c GMP) in the tissue of higher plants. The c GMP activity detected in fruits of Zizyphus jujuba was separated from the c AMP activity also present. The separated sample was extensively purified by Bio-Rad AG 1 × 4 and aluminium oxide CC, and by TLC. The purified sample showed the same physicochemical properties as authentic c GMP by TLC using different solvents and by UV spectroscopy, and was decomposable by cyclic nucleotide-specific phosphodiesterase. The identification was further supported by HPLC. The amount of c GMP present increases 90-fold during fruit ripening.  相似文献   

3.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

4.
An inosine-producing strain of Bacillus subtilis was mutated to resistance against the antagonist of glutamine, DL-methionine sulfoxide. Among the mutants derived, guanosine producers were observed frequently. The best strain, 14119, produced 9.6 g of guanosine per liter at a weight yield of 12% from consumed sugar. Inosine production decreased concomitantly. When resistance was increased further by exposure to higher doses of DL-methionine sulfoxide, another strain, AG169, was obtained that did not excrete inosine but produced increased amounts of xanthosine. In these strains, the specific activity of 5'-nucleotidase was lower and that of inosine 5'-monophosphate (IMP) dehydrogenase was higher than the parent strain. It is speculated that the metabolic flow from IMP to xanthosine 5'-monophosphate proceeds more smoothly than that from IMP to inosine and yields more xanthosine and guanosine.  相似文献   

5.
Cyclic adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic guanosine 3′:5′-monophosphate (cyclic GMP) have been determined at half-hourly intervals throughout the mitotic cycle of Physarum polycephalum. Cyclic AMP was constant at 1pmole/mg protein throughout except for a transient peak of 17pmoles/mg protein in the last quarter of G2. Cyclic GMP was more variable (2–4pmole/mg protein) rising to 9.5pmole/mg protein during the 3 hour S period and to 7pmole/mg protein during the last hour of G2. The significance of these changes is discussed.  相似文献   

6.
Derepression of the synthesis of inosine 5′-monophosphate (IMP) dehydrogenase and of xanthosine 5′-monophosphate (XMP) aminase in pur mutants of Escherichia coli which are blocked in the biosynthesis of adenine nucleotides and guanine nucleotides differs in two ways from derepression in pur mutants blocked exclusively in the biosynthesis of guanine nucleotides. (i) The maximal derepression is lower, and (ii) a sharp decrease in the specific activities of AMP dehydrogenase and XMP aminase occurs, following maximal derepression. From the in vivo and in vitro experiments described, it is shown that the lack of adenine nucleotides in derepressed pur mutants blocked in the biosynthesis of adenine and guanine nucleotides is responsible for these two phenomena. The adenine nucleotides are shown to play an important regulatory role in the biosynthesis of guanosine 5′-monophosphate (GMP). (i) They induce the syntheses of IMP dehydrogenase and XMP aminase. (The mechanism of induction may involve the expression of the gua operon.) (ii) They appear to have an activating function in IMP dehydrogenase and XMP aminase activity. The physiological importance of these regulatory characteristics of adenine nucleotides in the biosynthesis of GMP is discussed.  相似文献   

7.
GMP synthetase was purified 180-fold from E. coli B and 18-fold from the derepressed purine auxotroph, E. coli B-96. The enzymes from both sources show the same preference for glutamine over ammonia as amino donor. Each is dimeric, consisting of subunits of molecular weight about 60,000. Thus the two are apparently identical. The similarities between GMP synthetase and xanthosine 5′-phosphate aminase of E. coli B-96 (N. Sakamoto, G.W. Hatfield, and H.S. Moyed, J. Biol. Chem. (1972) 247, 5880–5887) in respect to structure, state of derepression, and behavior during purification, lead us to the conclusion that the synthetase and the aminase are a single entity. We observe no loss or separation of glutamine-dependent activity upon purification of GMP synthetase and we suggest that such loss, reported by other workers, results artifactually by inactivation of an intrinsic glutamine-binding site. GMP synthetase appears not to contain a glutamine-binding subunit which is separable from the xanthosine 5′-phosphate-aminating component.  相似文献   

8.
5′Xanthylic acid was efficiently converted to 5′guanine nucleotides (5′GMP, 5′GDP, and 5′GTP) without being degraded to guanine via 5′GMP by decoyinine resistant mutants of strain KY 13315 which had been isolated from Brevibacterium ammoniagenes and was practically devoid of 5′nucleotide degrading activity. The concentration of phosphate in the medium showed a profound effect on the ratio of the accumulated 5′guanine nucleotides, making it possible to direct the fermentation towards 5′GMP or 5′GTP. A direct accumulation of 5′guanine nucleotides from carbohydrate was possible by mixed cultivation of a 5′XMP accumulating strain and a 5′XMP converting mutant. A maximum concentration of 9.67 mg of 5′guanine nucleotides per ml was obtained directly from glucose in such a mixed culture.  相似文献   

9.
Guanosine 5′-tetraphosphate (GTP4) stimulated mammalian adenylate cyclase activity at concentrations down to 1 μM. Greater stimulatory activity was apparent with lung than with heart, brain or liver from the rat. At a concentration of 0.1 mM, GTP4 stimulated lung adenylate cyclase activity from rat, guinea pig and mouse about four-fold. Other guanine nucleotides such as GTP, GDP, GMP, guanosine 3′, 5′-monophosphate and 5′-guanylylimidodiphosphate (GMP · PNP) also stimulated mammalian adenylate cyclase activity. GMP · PNP irreversibly activated, whereas GTP4 and GTP reversibly activated adenylate cyclase. Adenosine 5′-tetraphosphate (ATP4) stimulated rat lung and liver but inhibited rat heart and brain adenylate cyclase activities. Lung from guinea pig and mouse were not affected by ATP4. The formation of cyclic AMP by GTP4-stimulated rat lung adenylate cyclase was verified by Dowex-50 (H+), Dowex 1-formate and polyethyleneimine cellulose column chromatography. GTP4 was at least three times more potent than 1-isoproterenol in stimulating rat lung adenylate cyclase activity. The β-adrenergic receptor antagonist propranolol blocked the effect of 1-isoproterenol but not that of GTP4, thus, suggesting that GTP4 and β-adrenergic agonists interact with different receptor sites on membrane-bound adenylate cyclase. Stimulation of rat lung and liver adenylate cyclase activities with 1-isoproterenol was potentiated by either GTP4 or GMP. PNP, thus indicating that GTP4 resembles other guanine nucleotides in their capacity to increase the sensitivity of adenylate cyclase to β-adrenergic agonists. Stimulation of adenylate cyclase activity by guanine derivatives requires one or more free phosphate moieties on the 5 position of ribose, as no effect was elicited with guanine, guanosine, guanosine 2′-monophosphate, guanosine 3′-monophosphate or guanosine 2′,5′-monophosphate. Ribose, ribose 5-phosphate, phosphate and pyrophosphate were inactive. Pyrimidine nucleoside mono-, di-, tri- and tetraphosphates elicited negligible effects on mammalian adenylate cyclase activity.  相似文献   

10.
The presence of psicofuranine in the fermentation medium caused the accumulation of a copious amount of 5′–XMP by Brevibacterium ammoniagenes. The accumulation of 5′–XMP in the medium was considered to be due to the inhibition of converting 5′–XMP to 5′–GMP by psicofuranine, which is known as a specific inhibitor of XMP aminase.

It was previously reported that in 5′–IMP fermentation with Br. ammoniagenes pantothenate and thiamine, in addition to biotin which was required for the growth of the microorganism, were exclusively required. This requirement for both vitamins was also observed in 5′–XMP production induced by the antibiotic.

The addition of manganese in excess to the fermentation medium promoted the bacterial growth greatly and inhibited IMP production, whereas XMP production induced by piscofuranine was not affected by the addition of excess manganese.

The accumulation of XMP induced by the antibiotic was completely suppressed by the presence of purine derivatives such as guanine, and xanthine derivatives, and partially by hypoxanthine.

5′–XMP was identified by chemical and enzymatic analyses and by UV absorption spectrum.  相似文献   

11.
Abstract

Several adenine- or adenosine-analogs, which inhibited growth and decreased the intracellular GTP pool, induced sporulation of Bacillus subtilis. The inducers were added to cultures growing in a medium containing excess ammonium ions, glucose, and phosphate in which cells normally cannot differentiate. They included compounds that are modified in the ribose unit (decoyinine, psicofuranine, cordycepin) or are substituted within the purine ring or at the 6-N position of adenosine (6-methylaminopurine, zeatin, 6-anilinopurine, formycin). Their effects on the cellular concentration of nucleotides were also measured. All sporulation inducers except formycin-A caused a decrease of GMP, GDP and GTP, some by inhibiting IMP dehydrogenase and others by inhibiting GMP synthetase. In contrast, formycin-A caused an increase of GMP while GDP and GTP decreased. Therefore, the compound (signal) controlling sporulation is GDP or GTP but not GMP. Antibiotics inhibiting growth by direct inhibition of nucleic acid synthesis did not induce sporulation.  相似文献   

12.
Changes in the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) during development were studied in the Dipterous Ceratitis capitata. The developmental patterns were different to each other. Cyclic AMP showed a sharp maximum in the larval stage to decrease afterwards during adult development. Changes of cyclic GMP exhibited an opposite pattern, although its levels were always higher than those of cyclic AMP.  相似文献   

13.
Effect of adenosine on the level of guanosine 3′,5′-monophosphate in guinea pig cerebellar slices was investigated. Adenosine increased the concentration of guanosine 3′,5′-monophosphate in the slices 3–4-fold. Upon removal of adenosine from the medium, the concentration of guanosine 3′,5′-monophosphate returned to the initial level. AMP, ADP or ATP also increased the guanosine 3′,5′-monophosphate level to the same extent as adenosine, while adenine or other nucleotides were not effective. In the absence of Ca2+ in the incubation medium, adenosine did not increase the concentration of guanosine 3′,5′-monophosphate in cerebellar slices although level of adenosine 3′,5′-monophosphate was elevated by adenosine.Anticholinergic agents, adrenergic blocking agents or antihistaminics did not prevent the increase of guanosine 3′,5′-monophosphate by adenosine indicating that the effect of adenosine was not mediated by the release of neurotransmitters.The combination of adenosine with depolarizing agents showed an additive effect on the level of guanosine 3′,5′-monophosphate indicating that adenosine increased the level of guanosine 3′,5′-monophosphate by a different mechanism from the depolarization.  相似文献   

14.
The effects of adenine and (or) guanosine concentration on the accumulation of inosine, xanthosine, adenosine and succino-adenosine were studied with various purine auxotrophs of Bacillus subtilis K strain. Genetical derepression of the common pathway enzymes resulted in increase in the accumulation of inosine, xanthosine and adenosine. Co-operative repression system of a common pathway enzyme, succino-AMP lyase with respect to adenine and guanosine, was confirmed under the condition of the accumulation test. From these and the relating other studies it was concluded that the synthesis of AMP was regulated mainly by the inhibition of PRPP amidotransferase by AMP and secondly by the repression of the common pathway enzymes by adenine and guanosine, that the synthesis of GMP was regulated mainly by the inhibition and repression of IMP dehydrogenase by guanine derivatives and that GMP was synthesized in preference to AMP at the branch point, IMP.  相似文献   

15.
Adenosine 3′:5′-monophosphate (cyclic AMP) and guanosine 3′:5′-monophosphate (cyclic GMP) have been determined simultaneously by combining individual protein binding assays using different isotopically labeled cyclic nucleotides. Preparations of cyclic AMP-binding protein from beef adrenal cortex and cyclic GMP-binding protein from the fat body of silkworm pupae (Bombyx mori) have been used for the assay. The method allows the analysis of cyclic AMP and cyclic GMP levels in crude extracts without any purification. The assay has been applied to hormone-stimulated Mouse liver and phorbol ester-treated Rat embryo cells.  相似文献   

16.
Guanosine 5′-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5′-diphosphate (GDP)-l-fucose. In this study, improvement of GDP-l-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-l-fucose. The effects of overexpression of inosine 5′-monophosphate (IMP) dehydrogenase, guanosine 5′-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine–inosine kinase (Gsk) on GDP-l-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-l-fucose production. Maximum GDP-l-fucose concentration of 305.5 ± 5.3 mg l−1 was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes. Such an enhancement of GDP-l-fucose production could be due to the increase in the intracellular level of GMP.  相似文献   

17.
Guanosine 5′-monophosphate synthetase(s) (GMPS) catalyzes the final step of the de novo synthetic pathway of purine nucleotides. GMPS consists of two functional units that are present as domains or subunits: glutamine amidotransferase (GATase) and ATP pyrophosphatase (ATPPase). GATase hydrolyzes glutamine to yield glutamate and ammonia, while ATPPase utilizes ammonia to convert adenyl xanthosine 5′-monophosphate (adenyl-XMP) into guanosine 5′-monophosphate. Here we report the crystal structure of PH-ATPPase (the ATPPase subunit of the two-subunit-type GMPS from the hyperthermophilic archaeon Pyrococcus horikoshii OT3). PH-ATPPase consists of two domains (N-domain and C-domain) and exists as a homodimer in the crystal and in solution. The N-domain contains an ATP-binding platform called P-loop, whereas the C-domain contains the xanthosine 5'-monophosphate (XMP)-binding site and also contributes to homodimerization. We have also demonstrated that PH-GATase (the glutamine amidotransferase subunit of the two-subunit-type GMPS from the hyperthermophilic archaeon P. horikoshii OT3) alone is inactive, and that all substrates of PH-ATPPase except for ammonia (Mg2+, ATP and XMP) are required to stabilize the active complex of PH-ATPPase and PH-GATase subunits.  相似文献   

18.
The sporulation of Bacillus subtilis can be induced in the presence of amino acids and glucose by partially depriving the cells of guanine nucleotides. This can be achieved, e.g., by the addition of decoyinine, a specific inhibitor of GMP synthetase. To determine the effect of this and other inhibitors on cell wall synthesis, we measured in their presence the incorporation of acetylglucosamine into acid-precipitable material. The rate of wall synthesis decreased by 50% within 5 min after decoyinine addition; this decrease was prevented by the presence of guanosine. A comparison with the effects of other inhibitors of cell wall synthesis indicated that decoyinine inhibited the final portion of the cell wall biosynthetic pathway, i.e., after the steps inhibited by bacitracin or vancomycin. Decoyinine addition also prevented cellular autolysis and cell wall turnover. It is not known whether these two effects of decoyinine on cell wall synthesis are causally related.  相似文献   

19.
In an exponentially growing culture of E. coli, the concentration of cyclic guanosine 3′:5′-monophosphate (cyclic GMP) was found to increase in parallel with the bacterial growth. As the cells approach the stationary phase of growth, the increment of cyclic GMP also ceases progressively to reach to a plateau. When cells are separated from the medium by centrifugation, almost all of the cyclic GMP is recovered in the culture supernatant. The amount of cyclic GMP accumulated is proportional to the number of cells present in the culture. These results suggest that a constant number of cyclic GMP molecules is synthesized each generation of E. coli, and is excreted from the cells to accumulate into the medium.  相似文献   

20.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号