首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of Fusarium culmorum fungus on a medium containing thermostable proteins from potato tubers was accompanied by the production of proteinases, exhibiting activity over a broad pH range (from 6.0-10.0). When studied by SDS-PAGE in the presence of beta-mercaptoethanol, extracellular proteinases were represented by at least five species with a molecular weight of 30-60 kDa. Inhibitor analysis and studies of enzyme activities with synthetic substrates demonstrated that the culture liquid of Fusarium culmorum contained serine proteinases of various classes. The amount of subtilisin-like proteinases was the highest. A near-complete inhibition of the enzymes was caused by proteinaceous proteinase inhibitors from potato tubers. These data suggest that proteinases of the phytopathogen Fusarium culmorum serve as a metabolic target for natural inhibitors of potato proteinases.  相似文献   

2.
The growth of Fusarium culmorum fungus on a medium containing thermostable proteins from potato tubers was accompanied by the production of proteinases, exhibiting activity over a broad pH range (from 6.0–10.0). When studied by SDS-PAGE in the presence of β-mercaptoethanol, extracellular proteinases were represented by at least five species with a molecular weight of 30–60 kDa. Inhibitor analysis and studies of enzyme activities with synthetic substrates demonstrated that the culture liquid of Fusarium culmorum contained serine proteinases of various classes. The amount of subtilisin-like proteinases was the highest. A near-complete inhibition of the enzymes was caused by proteinaceous proteinase inhibitors from potato tubers. These data suggest that proteinases of the phytopathogen Fusarium culmorum serve as a metabolic target for natural inhibitors of potato proteinases.  相似文献   

3.
K. Santarius  H. -D. Belitz 《Planta》1978,141(2):145-153
Several vegetative tissues of potato plants were screened for proteinase activity. Both endopeptidase and exopeptidase activities were investigated using gelatin and L-amino acid-4-nitroanilides (benzoyl-L-arginine-4-nitroanilide/BAPA, glutaryl-L-phenyl-alanine-4-nitroanilide/GLUPHEPA, alanine-4-nitro-anilide/APA, leucine-4-nitroanilide/LPA, and benzoyl-L-tyrosine-4-nitroanilide/BTPA) as substrates. Leaves and rootes were found to contain the highest levels of endopeptidase activity; lesser activities were detected in flower petals, sprouts, and tubers. Three different types of proteinases, L-BAPAase (serine proteinase), APAase (thiol proteinase), and BTPAase (sensitive to reducing agents), were characterized in various physical and chemical properties. Their temperature optima were determined to be 25° (L-BAPAase) and 40° (BTPAase, APAase) respectively; their pH optimum was between 8.6 and 9.0, their isoelectric points were between pH 4.25 and 6.0, and their molecular weight was estimated 70,000 (L-BAPAase, APAase) and between 150,000–250,000 (BTPAase). The trypsin-like activity against L-BAPA was inhibited by diisopropylfluorophosphate and by tosyllysine-chloromethyl ketone, but not by trypsin inhibitors from potato and legume.Abbreviations APA alanine-4-nitroanilide - BAPA benzoyl-L-arginine-4-nitroanilide - BTPA benzoyl-L-tyrosine-4-nitroanilide - DFP diisopropylfluorophosphate - DMF dimethyl formamide - EDTA ethylenedinitrilotetraacetic acid - GLUPHEPA glutaryl-L-phenylalanine-4-nitroanilide - LPA leucine-4-nitroanilide - PHMB p-hydroxy-mercuribenzoate - PI-I potato chymotrypsin inhibitor I - PPI potato proteinase leaf - PPr potato proteinase root - PPt potato proteinase tuber - PVP polyvinylpyrrolidone - TLCK tosyl-L-lysinechloromethyl ketone - TPCK tosyl-L-phenylalanyl chloromethane  相似文献   

4.
The activities of peroxidase and catalase were determined inconsecutive segments from cores struck from heel to rose endsof potato tubers, cv. Majestic, which had been grown in plotsof soil having nominal pH values of 4.5, 5.0, 5.5, 6.0, 6.5,7.0 and 7.5. Gradients of activity were computed and shown tobe parabolic upwards for peroxidase and parabolic downwardsfor catalase at the higher soil pH levels but both tended toshow linear trends in the more acid soils. The ratios of theactivities of peroxidase to catalase were at a maximum betweenpH 5.5 and 6.0 and decreased towards either end of the pH range. Solanum tuberosum, potato, tuber, enzyme activity, peroxidase, catalase  相似文献   

5.
Andreas Renz  Lucia Merlo  Mark Stitt 《Planta》1993,190(2):156-165
A combination of chromatography on DE-52 cellulose, Cibacron Blue agarose, Mono Q anion exchanger and gel filtration was used to resolve different hexose-phosphorylating enzymes from growing sink potato tubers (Solanum tuberosum L.). Three enzymes (fructokinases: FK1, FK2 and FK3) are active with fructose and inactive with glucose, and three (hexokinases: HK1, HK2 and HK3) are active with glucose but not with fructose. Elution from DE-52 columns showed that the relative abundance of the six activities changes, depending on the organ and on the developmental stage. FK1 and FK2 were present at high activities in tubers but at very low activity in leaves; conversely FK3 was present at very low activity in tubers but at high activity in leaves. During storage of potato tuber, and also during sprouting, there was a decrease of FK1 and FK2. In contrast, glucose-phosphorylating activity was very low in growing tubers. During storage and sprouting the activity of the glucose-phosphorylating enzymes rose, until they exceeded FK1 and FK2. This was due particularly to an increase of HK1, whereas HK2 declined relative to HK1, and HK3 was always negligible. These changes in the pattern of hexose-phosphorylating enzyme forms are compared with the changing metabolic fluxes and pools of hexose sugars in potato tubers. It is concluded that organ- and development-specific changes in the abundance of the various enzyme forms contribute to the regulation of hexose metabolism in the potato.Abbreviations DTT dithiothreitol - FK fructokinase - FPLC fast protein liquid chromatography - HK hexokinase - Susy sucrose synthase - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137). We are grateful to Professor E. Beck (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, FRG) for providing laboratory facilities, and to Professor L. Willmitzer and Dr. U. Sonnewald (Institut für Genbiologische Forschung, Berlin, FRG) and Professor H.W. Heldt and Dr. D. Heineke (Institut für Biochemie der Pflanze, Universität Göttingen, FRG) for discussion.  相似文献   

6.
Activities of enzymes presumably involved in starch biosynthesis (ADP-glucose pyrophosphorylase, AGPase) and/or breakdown (starch phosphorylase, STP; amylases) were determined during potato (Solanum tuberosum L.) tuber dormancy and sprouting. Overall activities of all these enzymes decreased during the first stage of tuber dormancy. No clear changes were detected at the time of dormancy breaking and sprouting. However, when AGPase activity was monitored by in situ staining during the entire dormancy period, a clear decrease during the dormant period and a large increase before visible sprouting could be observed. This increase was especially evident near the vascular tissue and at the apical bud, which showed a very intensive staining. In situ staining of STP activity in sprouting tubers showed that the tissue distribution of STP was the same as for AGPase. As a possible explanation, direct starch cycling is suggested: STP produces glucose-1-phosphate during starch breakdown, which can be directly used as a substrate by AGPase for starch synthesis. Gene expression studies with the AGPaseS promoter coupled to the firefly luciferase reporter gene also clearly showed a higher activity in sprouting tubers as compared to dormant tubers, with the highest expression levels observed around the apical buds. The presence of amylase activity at dormancy initiation and AGPase activity persistent at the sprouting stage suggest that starch was cycling throughout the entire dormancy period. According to the in situ studies, the AGPase activity increased well before visible sprout growth and could therefore be one of the first physiological determinants of dormancy breakage.  相似文献   

7.
The uptake of 32P-phosphocreatine by control and ischemic isolated perfused rat hearts has been studied. The rate of phosphocreatine (PCr) uptake by the hearts after 35 minutes of ischemia was two times that in control hearts at 0.5-10 mM PCr in the perfusate. At 10 mM PCr in the perfusate, this rate was 182 nmoles/min/g dry weight. The 5'-nucleotidase and phosphatase activities were found in the crude plasma membrane fraction of rat heart. The pH-dependence of these enzymes was examined. The 5'-nucleotidase activity decreased with a drop in pH from 8.0 to 6.0. The phosphatase activity in the crude plasma membrane fraction of rat heart was increased 2-fold with a decrease in pH from 8.0 to 6.0. The 5'-nucleotidase activity was inhibited by 10 mM PCr in the presence of 5 mM Mg2+. This inhibition was pH-dependent with a maximum (58%) at pH 6.0. The inhibition of phosphatase activity by PCr was independent of pH and reached 20% in the presence of 10 mM PCr. Some feasible mechanisms of the protective effect of PCr on ischemic myocardium are discussed.  相似文献   

8.
Expanded bed adsorption for recovery of patatin from crude potato juice   总被引:2,自引:0,他引:2  
An expanded bed adsorption process was used to isolate patatin possessing esterase activity, from a crude juice of potato tubers. Patatin is the major storage protein of potato tubers and is released in ample amounts in the processing effluent during starch milling. We employed mixed mode affinity resins, where the binding depends primarily on the pH, and is almost independent of the ionic strength. From a library of mixed mode chemistries involving both charged and hydrophobic functions, we screened for ligands with binding specificity for patatin. The dynamic binding capacity of two high density (1.45–1.5 g ml-1) patatin-binding agarose-glass resins in response to change of linear velocity (85–230 cm h-1) was tested in packed (25 ml) and expanded (250 ml) column modes. The column operation included a loading step at low expansion; H/Ho~1.2. Adsorption from crude juice at pH 7.5, retained patatins up to a breakthrough level of 50%. The eluate fraction at pH 3.5, now effectively stripped from the pigments, provided a 2.5-fold enzyme enrichment and produced 4 g protein per cycle. Column productivity was 122 kAU L-1 h-1. The study, using potato juice as model feedstock, demonstrated the feasibility of expanded bed-recovery of potentially valuable proteins from plant biomass.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
P S Tan  K M Pos    W N Konings 《Applied microbiology》1991,57(12):3593-3599
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.  相似文献   

10.
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.  相似文献   

11.
The fungal plant pathogen Rhizoctonia solani Kuhn. grown in a medium containing thermostable potato tuber proteins produced proteinases active at moderately alkaline pH values. Electrophoretic analysis in polyacrylamide gel with SDS and copolymerized gelatin showed that the extracellular proteinase complex contained four components that differed in molecular weight. Studies on the action of the exoenzymes on various synthetic substrates indicated that the culture liquid of R. solani contained mainly trypsin-like proteinases. The exoproteinase activity was virtually completely suppressed by trypsin inhibitor proteins isolated from potato tubers and seeds of various legume species. The results suggest that the extracellular proteinases produced by R. solani play a significant role in attacking plant tissue, and natural inhibitors contribute to the protection of Solanaceae and Leguminosae from this fungal pathogen.  相似文献   

12.
The conversion of a slow moving potato phosphorylase isozyme to a fast one, in sprouting tubers, either on freezing the whole tubers or on storage of their crude extracts, is due to limited proteolysis. High protease inhibitor concentration seems to be the primary factor preventing this conversion in freshly harvested tubers under similar conditions. Though MW determinations on both isozymes show the removal of a peptide during conversion, it is also likely that the enzyme may take up a different conformation due to the removal of this peptide.  相似文献   

13.
A complex containing trypsin inhibitor (TI) activity was extracted with 0.1 M TRIS buffer (pH 7.9) from trypsin-treated mitochondria of etiolated mung bean seedlings, and further purified with a Superdex 200 FPLC column. This partially purified complex with an M(r) about 820 kDa exhibited additional dehydroascorbate (DHA) reductase activity with specific activities of 0.21, 1.53 and 1.54 mumol ascorbate formed min-1 mg-1 protein at pH 6.0, 6.5 and 7.0, respectively, when glutathione was added. Much lower DHA reductase activity (0.013 and 0.026 mumol ascorbate formed min-1 mg-1 protein at pH 6.5 and 7.0, respectively) was found when glutathione was omitted. The isolated complex gave positive results when it was tested by TI activity staining after SDS-PAGE, and could be recognized by a polyclonal antibody which was raised against 38 kDa sweet potato Kunitz-type TI, one of the root storage proteins of sweet potato. The possible physiological functions of this complex with both TI and DHA reductase activities were discussed.  相似文献   

14.
Nodule extracts prepared from Glycine max var Woodworth possessed endopeptidase, aminopeptidase, and carboxypeptidase activities. Three distinct endopeptidase activities could be resolved by disc-gel electrophoresis at pH 8.8. According to their order of increasing electrophoretic mobility, the first of these enzymes hydrolyzed azocasein and n-benzoyl-l-Leu-beta-naphthylamide, while the second hydrolyzed n-benzoyl-l-Arg-beta-naphthylamine (Bz-l-Arg-betaNA), n-benzoyl-l-Arg-p-nitroanilide (Bz-l-Arg-pNA), and azocasein. The third endopeptidase hydrolyzed Bz-l-Arg-betaNA, Bz-l-Arg-pNA, and hemoglobin. Fractions of these enzymes extracted from electrophoresis gels were shown to have pH optima from 7.5 to 9.8. All of the endopeptidases were completely inhibited by diisopropylphosphorofluoridate, demonstrating that they were serine proteases.Aminopeptidase activity was measured using amino acyl-beta-naphthylamides. Electrophoresis of nodule extracts at pH 6.8 resolved the aminopeptidase activity of nodule extracts into at least four fractions based on mobility and on activities toward amino acyl-beta-naphthylamides. The major activity of two of the aminopeptidases was directed toward l-Leu- and l-Met-beta-naphthylamide, while the other two aminopeptidases exhibited broader specificity and were capable of hydrolyzing a large number of amino acyl-beta-naphthylamides. Two of the aminopeptidases extracted from electrophoresis gels were classified as thiol type enzymes, and all four aminopeptidases had neutral to basic pH optima.  相似文献   

15.
Potato is a globally important crop. Unfortunately, potato farming is plagued with problems associated with the sprouting behavior of seed tubers. The data presented here demonstrate that using transgenic technology can influence this behavior. Transgenic tubers cytosolically expressing an inorganic pyrophosphatase gene derived from Escherichia coli under the control of the tuber-specific patatin promoter display significantly accelerated sprouting. The period of presprouting dormancy for transgenic tubers planted immediately after harvest is reduced by six to seven weeks when compared to wild-type tubers. This study demonstrates a method with which to regulate dormancy, an important aspect of potato crop management.  相似文献   

16.
The activity of a polygalacturonase-inhibiting protein was determined in growing potato plants and in stored potato tubers. The activity in leaves was higher than in stems, and it decreased by the end of the vegetative season. During the dormancy period, the inhibitory activity in tubers also changed. In the sprouting tubers, it was somewhat lower than in the nonsprouting ones, and, in sprouts, it was usually higher than in tubers. Both the plant polygalacturonase and the polygalacturonase secreted by phytopathogenic fungi after their penetration in plant tissues can serve as inhibitor's targets. Therefore, the inhibitor seems to control the resistance of plants to infection by particular pathogens, and this resistance is characteristic of definite developmental stages.  相似文献   

17.
A purified mitochondrial fraction was isolated from potato (Solanum tuberosum L.) tubers respiring normally at 23°C or at an accelerated rate in response to treatment with ethylene (10 microliters per liter).

A pronounced increase in various mitochondrial enzymic activities was observed in response to exposure of the whole tubers to ethylene. Cytochrome c oxidase activity increased more than 50%, DNA polymerase activity increased about 2-fold, and RNA polymerase activity increased 2.5-fold. Moreover, DNA or RNA polymerase activities of mitochondria isolated from tubers not treated with ethylene were not affected by ethylene treatment in vitro. Respiratory control ratios decreased from 2.84 to 1.50 with increasing periods of ethylene treatment from 0 to 15 hours. None of these changes were observed in untreated tubers. It is concluded that the stimulation of respiration by ethylene in potato tubers is accompanied in vivo by an enhancement of mitochondrial enzymic activity of both membrane-associated enzymes which participate in the mitochondrial oxidative electron transport as well as soluble enzymes which are not directly involved in respiration.

  相似文献   

18.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

19.
The fungal plant pathogen Rhizoctonia solani Kuhn. grown in a medium containing thermostable potato tuber proteins produced proteinases active at moderately alkaline pH values. Electrophoretic analysis in polyacrylamide gel with SDS and copolymerized gelatin showed that the extracellular proteinase complex contained four components that differed in molecular weight. Studies on the action of the exoenzymes on various synthetic substrates indicated that the culture liquid of R. solani contained mainly trypsin-like proteinases. The exoproteinase activity was virtually completely suppressed by trypsin inhibitor proteins isolated from potato tubers and seeds of various legume species. The results suggest that the extracellular proteinases produced by R. solani play a significant role in attacking plant tissue, and natural inhibitors contribute to the protection of Solanaceae and Leguminosae from this fungal pathogen.  相似文献   

20.
D-alanyl-meso-2, 6-diaminopimelic acid (D-Alanyl-meso-A2pm) endopeptidase was isolated and purified from a crude Streptomyces L-3 enzyme preparation by ion exchange chromatography and isoelectric focusing in a density gradient. During its purification, its hydrolytic activity was assayed on cell walls of Lactobacillus plantarum ATCC 8014 and soluble glycopeptides and peptides, of known chemical structures, prepared enzymatically from these cell walls. A fraction with an isoelectric point of pH 7.9 cleaved the bond between the carboxyl group of the D-alanine residue at the C-terminal in one peptide subunit and one of the two amino groups of the A2pm residue in the neighboring peptide subunit. Unlike the crude enzyme, the endopeptidase in this fraction showed no N-acetylmuramyl-L-alanine amidase, A2pm carboxyamide amidase or proteinase(s) activity and it was immunologically homogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号