首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three microorganisms that degrade creatinine and contain sarcosine oxidase were isolated from soil and identified to be Alcaligenes denitrificans subsp. denitrificans J9 and Arthrobacter spp. J5 and J11. The three soil isolates degraded creatinine only via creatine by inducibly formed creatinine amidohydrolase, creatine amidinohydrolase, and sarcosine oxidase when cultivated with creatinine as the main nitrogen source. Sarcosine dehydrogenase, creatinine deiminase, and N-carbamoylsarcosine amidohydrolase were not induced by creatinine. Other microorganisms that degrade creatinine all contain sarcosine dehydrogenase as the enzyme for sarcosine oxidation, so these isolates seem to be unique in having sarcosine oxidase involved in their processes of creatinine degradation. Sarcosine oxidase was purified from A. denitrificans subsp. denitrificans J9 and partially characterized.  相似文献   

2.
A mixture of commercial creatinine amidohydrolase (CA), creatine amidinohydrolase (CI), and sarcosine oxidase (SO) was coimmobilized covalently via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto carboxylated multiwalled carbon nanotube (c-MWCNT)/polyaniline (PANI) nanocomposite film electrodeposited over the surface of a platinum (Pt) electrode. A creatinine biosensor was fabricated using enzyme/c-MWCNT/PANI/Pt as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and electrochemical impedance spectroscopy (EIS). The biosensor detected creatinine levels as low as 0.1 μM, estimated at a signal-to-noise ratio of 3, within 5 s at pH 7.5 and 35 °C. The optimized biosensor showed a linear response range of 10 to 750 μM creatinine with sensitivity of 40 μA/mM/cm2. The fabricated biosensor was successfully employed for determination of creatinine in human serum. The biosensor showed only 15% loss in its initial response after 180 days when stored at 4 °C.  相似文献   

3.
Summary WhenA. ureafaciens are grown in a medium containing either creatinine or creatine as the sole source of carbon, an enzyme system capable of catabolizing creatine and creatinine is induced. This enzyme system has been isolated in a cell-free extract and is composed of two separate enzymes. The first, creatinine hydrolase, interconverts creatinine and creatine to form an equilibrium mixture of the two. The second enzyme, creatine amidinohydrolase, splits creatine into equimolar amounts of sarcosine and urea. The former enzyme is heat stable at 55°C for 30 min while the latter enzyme is completely destroyed at this temperature. The two enzymes have different solubilities in ammonium sulfate solutions.Predoctoral Fellow supported by NIH Training Grant GM00052.Submitted in partial fulfillment of the M.S. degree.  相似文献   

4.
The microbial decomposition of creatinine was found to proceed mainly via N-methylhydantoin or creatine as the first degradation product. Either N-methylhydantoin or urea or both were detected as metabolites derived from creatinine in various microorganisms, and creatinine deiminase and creatinine amidohydrolase activities were detected concomitantly. N-Methylhydantoin hydrolase and N-carbamoylsarcosine amidohydrolase were found to be formed inducibly in the presence of creatinine or N-methylhydantoin. Three microorganisms which decompose creatinine in different ways were screened from soil. Pseudomonas putida 77 rapidly metabolized creatinine solely via N-methylhydantoin. Degradation of creatinine proceeded with both creatine and N-methylhydantoin as the first degradation products at the same time in Pseudomonas sp. H21. Pseudomonas sp. 0114 was found to metabolize creatinine mainly via creatine and to also metabolize N-methylhydantoin. Changes in the metabolites of creatinine during a cultivation or enzyme reaction were found to be closely related to the enzyme activities of interest which are regulated by creatinine or N-methylhydantoin in different ways depending on the microbial strain.  相似文献   

5.
Assessment of blood chemistry normal ranges in rainbow trout   总被引:1,自引:0,他引:1  
  相似文献   

6.
With N-methylhydantoin (NMH) as the main organic substrate, two strictly anaerobic spore forming Gram-positive bacterial strains were isolated from sewage sludge. These strains, named Clostridium sp. FS23 and Clostridium sp. FS41, totally degraded NMH, via N-carbamoylsarcosine (CS) and sarcosine as intermediates. Strain FS23 grew also with creatinine, which was converted to NMH by creatinine iminohydrolase (EC 3.5.4.21). This enzyme was formed at high rates with all substrates tested. Cytosine and 5-fluorocytosine were not utilized as substrates by creatinine iminohydrolase preparations purified to a homogeneity of 98%. NMH amidohydrolase (NMHase) and N-carbamoylsarcosine amidohydrolase (CSHase) turned out to be inducible in both srains. Other than in aerobic organisms, NMHase from these two isolates did not require ATP for enzymatic activity. SH-group protecting agents were not necessary for stability.  相似文献   

7.
A sarcosine dehydrogenase was purified to homogeneity from cell free extract of Pseudomonas putida aerobically grown in a medium containing creatinine or betaine as the carbon and nitrogen sources. The enzyme catalyzed dehydrogenation of N-methyl derivatives of some amino acids but was inert toward dimethylglycine, betaine and choline. Phenazine methosulfate, 2, 6-dichlorophenol indophenol, methylene blue, meldora blue, nile blue and potassium ferricyanide served as electron carriers. The maximal activity was observed at pH 8.0–9.0. The Km and Kmax values for sarcosine were 29 mm and 1.2 μmol/min/mg, respectively. The molecular weight was estimated to be about 170,000, presumably composed of four sub-units. Spectrophotometric and fluorometric analyses indicated that the enzyme was a flavoprotein.  相似文献   

8.
Abstract

Carbon paste based biosensors for the determination of creatine and creatinine have been integrated into a sequential injection system. Applying the multi‐enzyme sequence of creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO), hydrogen peroxide has been detected amperometrically. The linear concentration ranges are of pmol/L to nmol/L magnitude, with very low limits of detection. The proposed SIA system can be utilized reliably for the on‐line simultaneous detection of creatine and creatinine in pharmaceutical products, as well as in serum samples, with a rate of 34 samples per hour and RSD values better than 0.16% (n=10).  相似文献   

9.
The different phosphagen systems in the lugworm Arenicola marina, the phosphotaurocyamine/taurocyamine kinase system of the body wall and the phosphocreatine/creatine kinase system of the spermatozoa, have been investigated to answer the question whether the change reflects different functional modes of these phosphagen systems. Enzyme analyses have shown that in contrast to the body wall taurocyamine kinase, creatine kinase of spermatozoa exists in at least two different forms which are compartmented in the mitochondria (creatine kinase I) and in the flagellum (creatine kinase II). Creatine kinase I is strongly attached to cell structures which require detergents and high phosphate concentrations for solubilization. The affinities of taurocyamine kinase and creatine kinase for all substrates are very similar except the extremely high K m for creatine of both creatine kinase I and II. The level of creatine in spermatozoa is fivefold higher than taurocyamine in the body wall at similar phosphorylation potential (ATP/ADOfree) and ATP-buffer capacity (phosphagen/ATP), reflecting the higher equilibrium constants of the creatine kinase reaction compared to that of the taurocyamine kinase reaction (Ellington 1989). The high creatine concentration gives the phosphocreatine/creatine kinase system an advantage over the phosphotaurocyamine/taurocyamine kinase system for transport of energyrich phosphate at high phosphorylation potential by increasing the radial diffusion flux. The maximum diffusive flux of free ADP in spermatozoa is three orders of magnitude below the respiratory ATP production while the creatine flux would allow an unlimited energy transport over the long diffusion distance. In lugworm body wall, however, the low ATP turnover and the low diffusion distances between mitochondria and myosin-ATPases do not require a phosphagen shuttle.Abbreviations ADP free cytoplasmic adenosine diphosphate - Ap 5 A P1, P5-di(adenosine-5-) pentaphosphate - AK arginine kinase - CK creatine kinase (EC 2.7.3.2) - DTT dithiothreitol - GAPDH glyceraldehydephosphate dehydrogenase (EC 1.2.1.12) - HOADH 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) - IEP isoelectric point - MIM mitochondria isolating medium - P i-free cytoplasmic inorganic phosphate - (P)Arg (phospho)arginine - (P)Cr (phospho)creatine - (P)Tc (phospho)taurocyamine - SEM scanning electron microscopy - TK taurocyamine kinase - TEM transmission electron microscopy  相似文献   

10.
Summary Strains of Debaryomyces hansenii, Deb. kloeckeri, Deb. subglobosus, Deb. nicotianae and their imperfect forms Torulopsis famata and T. candida were found to be able to use creatine and creatinine as a sole source of nitrogen. Most strains could assimilate creatine when tested by the auxanographic method, while creatinine was only assimilated in liquid medium. In several instances the reaction with creatine in the auxanogram was positive, and in the liquid medium negative.We have considered the taxonomic value of the utilization of creatine and creatine in the first place for distinction between the four Debaryomyces species, and in the second place for the differentiation of the four species as a group from other species.  相似文献   

11.
A 20-fold induction of the pyruvate dehydrogenase complex, pyruvate dehydrogenase (EC 1.2.4.1) plus dihydrolipoate S-acetyltransferase, (lipoyltransacetylase) (EC 2.3.1.12) plus dihydrolipoyl dehydrogenase, NADH : lipoamide oxidoreductase, (EC 1.6.4.3), from a specific activity of 3.5–65.0 was observed in mitochondrial extracts during adaptation of Neurospora to glucose from acetate media. The extent of ATP-dependent, time-dependent inactivation of the pyruvate dehydrogenase complex was approximately the same in both acetate- and glucose-grown cells, thereby indicating that the low pyruvate dehydrogenerase complex activities in acetate-grown cells did not represent phosphorylated pyruvate dehydrogenase complex molecules. High levels of dihydrolipoyl transacetylase (EC 2.3.1.12) were observed in mitochondrial extracts from acetate-grown cells; this lipoyltransacetylase was analyzed on sucrose density gradients and found to be associated with the pyruvate dehydrogenase complex. Digitonin fractionation of mitochondria revealed that both the pyruvate dehydrogenase complex and lipoyltransacetylase were primarily associated with the mitochondrial outer membrane.  相似文献   

12.
Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.  相似文献   

13.
From 60 species of the genus Clostridium tested 26 species were able to degrade one to three of the following compounds: betaine, choline, creatine, and ethanolamine. Degradation of betaine and choline was always associated with the formation of trimethylamine as one of the products. Creatine was converted to N-methylhydantoin and with one species (Clostridium sordellii) to sarcosine in addition. The diagnostic value of the ability of clostridial species to degrade the compounds mentioned is discussed. N,N-dimethylglycine, N,N-dimethylethanolamine or sarcosine were not metabolized by the strains tested.  相似文献   

14.
The biosynthetic route to L-tyrosine was identified in isogenic suspension-cultured cells of N. silvestris. Arogenate (NADP+) dehydrogenase, the essential enzyme responsible for the conversion of L-arogenato L-tyrosine, was readily observed in crude extracts. In contrast, prephenate dehydrogenase (EC 1.3.1.13) activity with either NAD+ or NADP+ was absent altogether. Therefore, it seems likely that this tobacco species utilizes the arogenate pathway as the exclusive metabolic route to L-tyrosine. L-Tyrosine (but not L-phenylalanine) was a very effective endproduct inhibitor of arogenate dehydrogenase. In addition, analogs of L-tyrosine (m-fluoro-DL-tyrosine [MFT], D-tyrosine and N-acetyl-DL-tyrosine), but not of L-phenylalanine (o-fluoro-DL-phenylalanine and p-fluoro-DL-phenylalanine), were able to cause inhibition of arogenate dehydrogenase. The potent antimetabolite of L-tryptophan, 6-fluoro-DL-tryptophan, had no effect upon arogenate dehydrogenase activity. Of the compounds tested, MFT was actually more effective as an inhibitor of arogenate dehydrogenase than was L-tyrosine. Since MFT was found to be a potent antimetabolite inhibitor of growth in N. silvestris and since inhibition was specifically and effectively reversed by L-tyrosine, arogenate dehydrogenase is an outstanding candidate as the in vivo target of analog action. Although chorismate mutase (EC 5.4.99.5) cannot be the prime target of MFT action, MFT can mimick L-tyrosine in partially inhibiting this enzyme activity. The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was insensitive to L-phenylalanine or L-tyrosine. The overall features of this system indicate that MFT should be a very effective analog mimick for selection of feedback-insensitive regulatory mutants L-tyrosine biosynthesis.Abbreviations DAHP synthase 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase - 6FT 6-fluoro-DL-tryptophan - MFT m-fluoro-DL-tyrosine - OFP o-fluoro-DL-phenylalanine - PFP p-fluoro-DL-phenylalanine  相似文献   

15.
L-lysine synthesis pathway enzyme activities: β-aspartate kinase (EC.2.7.2.4), diaminopimelate decarboxylase (EC.4.1.1.20) for two L-lysine producing strains Brevibacterium flavum 22LD and RC-115 were studied. It has been found that β-aspartate kinase and diaminopimelate decarboxylase in the Br. flavum RC-115 are less sensitive to feed-back inhibition by lysine and threonine. It is supposed that desensitized β-aspartate kinase in the Br. flavum RC-115 can be determined by genetical changes of the regulatory properties of the β-aspartate kinase. Auxotrophity in the locus of homoserine dehydrogenase was tested and no homoserine dehydrogenase (EC.1.1.1.3) activity was found in either strain. The combination of these both types of mutation supplemented by the lack of catabolic repression in the RC-115 strain makes it an active lysine producer in the medium with high carbohydrates content.  相似文献   

16.
Sarcosinemia is an autosomal recessive metabolic trait manifested by relatively high concentrations of sarcosine in blood and urine. Sarcosine is a key intermediate in 1-carbon metabolism and under normal circumstances is converted to glycine by the enzyme sarcosine dehydrogenase. We encountered six families from two different descents (French and Arab), each with at least one individual with elevated levels of sarcosine in blood and urine. Using the “candidate gene approach” we sequenced the gene encoding sarcosine dehydrogenase (SARDH), which plays an important role in the conversion of sarcosine to glycine, and found four different mutations (P287L, V71F, R723X, R514X) in three patients. In an additional patient, we found a uniparental disomy in the region of SARDH gene. In two other patients, we did not find any mutations in this gene. We have shown for the first time that mutations in the SARDH gene are associated with sarcosinemia. In addition, our results indicate that other genes are most probably involved in the pathogenesis of this condition.  相似文献   

17.
Five strains of trypanosomatids of the genus Phytomonas, isolated from different species of Euphorbia {Euphorbia heterophylla, E. characias, E. pinea, E. hyssopifolia) and from Manihot escutenta, were cultured and compared through the electrophoretic mobility of isoenzymes of six enzymes: aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glucosephosphate isomerase (EC 5.3.1.9), and malate dehydrogenase (EC 1.1.1.40). The strains could be distinguished from one another by their respective isoenzyme profiles.  相似文献   

18.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

19.
Enzymatic activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39), phospho(enol)pyruvate carboxylase (EC 4.1.1.31), NAD malate dehydrogenase (EC 1.1.1.37), and NADP glyceraldehyde phosphate dehydrogenase complex including phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13) were comparatively assayed in wheat seedlings of the cultivar Lyutestsens 758 grown under normal conditions, water deficiency conditions, and subsequent rehydration. Water stress was found to decrease the activity of all enzymes tested, the effect being most pronounced in the case of Rubisco. The content of Rubisco in wheat plants exposed to water deficiency was reduced less significantly than the activity of the enzyme. Pretreatment of plant seeds with kartolin-4 (o-isopropyl-N-2-hydroxyethyl carbamate), a preparation with cytokinin activity, reduced the dehydration-induced inhibition of enzymatic activity. Upon a subsequent rehydration, kartolin-4 facilitated rapid recovery of the photosynthetic activity, the process being based on the kartolin-induced stimulation of reparation reactions. Under conditions of water stress, a partial decrease in the activity of carbon metabolism enzymes in vitrowas accompanied by complete inhibition of photosynthesis in vivo, perhaps, as a result of an abrupt increase in the stomatal resistance.  相似文献   

20.
Kay Denyer  Alison M. Smith 《Planta》1988,173(2):172-182
In order to determine whether the enzymes required to convert triose phosphate to acetyl CoA were present in pea (Pisum sativum L.) seed plastids, a rapid, mechanical technique was used to isolate plastids from developing cotyledons. The plastids were intact and the extraplastidial contamination was low. The following glycolytic enzymes, though predominantly cytosolic, were found to be present in plastids: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), and pyruvate kinase(EC 2.7.1.40). Evidence is presented which indicates that plastids also contained low activities of enolase (EC 4.2.1.11) and phosphoglycerate mutase (EC 2.7.5.3). Pyruvate dehydrogenase, although predominantly mitochondrial, was also present in plastids. The plastidial activities of the above enzymes were high enough to account for the rate of lipid synthesis observed in vivo.Abbreviations FPLC fast protein liquid chromatography - PPi pyrophosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号