首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Microorganisms capable of utilizing pristane (2,6,10,14-tetramethylpentadecane) as a sole source of carbon and energy were isolated from soil specimens. A strain BPM 1613, tentatively classified in the genus Nocardia, accumulated several oxidation products of pristane in the culture fluid. Silica gel chromatography of the ethyl ether extract from the culture fluid yielded pristanol and pristanic acid as major products and pristyl pristanate and pristyl aldehyde as minor products. The confirmations on the estimated structures of these oxidation products are described in detail.  相似文献   

3.
Microbial Degradation of High-Molecular-Weight Alkanes   总被引:5,自引:2,他引:3       下载免费PDF全文
Measurements of biological O(2) demand showed that normal alkanes containing up to 44 carbon atoms were metabolized by microorganisms.  相似文献   

4.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   

5.
Oxidation of Alkanes to Internal Monoalkenes by a Nocardia   总被引:1,自引:0,他引:1       下载免费PDF全文
A suspension of glucose-grown resting cells of Nocardia salmonicolor PSU-N-18 oxidized hexadecane to a mixture of internal monohexadecenes. The latter exhibited a cis configuration, and the mixture consisted of the following: 7-hexadecene, 80%; 8-hexadecene, 18%; and 6-hexadecene, 2%. Alkanes other than hexadecane also were unsaturated by the resting cells, and the composition of the monoalkenes resulting from octadecane dehydrogenation was 9-octadecene, 91%; 8-octadecene, 2 to 3%; 7-octadecene, 1 to 2%; and 6- and 5-octadecenes, trace amounts. Only minute quantities of unsaturated hydrocarbons accumulated during growth on hexadecane and during resting-cell incubation of hexadecane-grown cells with hexadecane. The dehydrogenation of hydrocarbons did not appear to be related to the formation of unsaturated fatty acids. It is postulated that double bond insertion may represent an early step in a new pathway of aliphatic hydrocarbon degradation.  相似文献   

6.
Anaerobic, Nitrate-Dependent Microbial Oxidation of Ferrous Iron   总被引:20,自引:6,他引:20       下载免费PDF全文
Enrichment and pure cultures of nitrate-reducing bacteria were shown to grow anaerobically with ferrous iron as the only electron donor or as the additional electron donor in the presence of acetate. The newly observed bacterial process may significantly contribute to ferric iron formation in the suboxic zone of aquatic sediments.  相似文献   

7.
The recalcitrance of xenobiotics may be caused by an absence of transforming enzymes or by their inability to enter microbial cells. A nondestructive method for differentiating between these two possibilities is described. The solid n-alkanes octadecane (C18) and hexatriacontane (C36) were encapsulated into phosphatidylcholine bilayers (liposomes). The uptake and metabolism rates of encapsulated and unencapsulated substrates were then compared. During 1 h at 25°C, a Pseudomonas isolate took up 1.3% of radiolabeled and unencapsulated C18 (solid state) versus 23.5% of labeled and encapsulated C18. Growth at 25°C occurred with an apparent ks of 2453 ± 148 mg/liter. Liposome encapsulation decreased this Ks to 60 ± 12 mg/liter. At 34°C, growth on C18 (liquid state) occurred with an apparent Ks of 819 ± 83 mg/liter and on the readily available carbon source succinate, Ks values were 80 ± 10 and 13 ± 7 mg/liter at 25 and 34°C, respectively. At 25°C, the isolate grew on C36 with an apparent Ks of 2,698 ± 831 mg/liter. Liposome encapsulation decreased the Ks more than 60-fold to 41 ± 7 mg/liter, resulting in the complete utilization of 400 mg of C36 per liter in 16 h. Since controls excluded the metabolic utilization of phosphatidylcholine, the results clearly identify transport limitation as the cause for C36 recalcitrance.  相似文献   

8.
A new method for the oxidation of primary ad secondary allylic alcohols to the corresponding aldehydes/acids and ketones respectively is described utilizing Nocardia corallina B-276. In contrast, Pseudomonas oleovorans TF4-1L oxidized only the primary allylic alcohols but not the secondary allylic alcohols.  相似文献   

9.
Mixtures of nonionic and anionic surfactants, including Corexit 9527, were tested to determine their effects on bacterial oxidation of acetate and alkanes in crude oil by cells pregrown on these substrates. Corexit 9527 inhibited oxidation of the alkanes in crude oil by Acinetobacter calcoaceticus ATCC 31012, while Span 80, a Corexit 9527 constituent, markedly increased the oil oxidation rate. Another Corexit 9527 constituent, the negatively charged dioctyl sulfosuccinate (AOT), strongly reduced the oxidation rate. The combination of Span 80 and AOT increased the rate, but not as much as Span 80 alone increased it, which tentatively explained the negative effect of Corexit 9527. The results of acetate uptake and oxidation experiments indicated that the nonionic surfactants interacted with the acetate uptake system while the anionic surfactant interacted with the oxidation system of the bacteria. The overall effect of Corexit 9527 on alkane oxidation by A. calcoaceticus ATCC 31012 thus seems to be the sum of the independent effects of the individual surfactants in the surfactant mixture. When Rhodococcus sp. strain 094 was used, the alkane oxidation rate decreased to almost zero in the presence of a mixture of Tergitol 15-S-7 and AOT even though the Tergitol 15-S-7 surfactant increased the alkane oxidation rate and AOT did not affect it. This indicated that there was synergism between the two surfactants rather than an additive effect like that observed for A. calcoaceticus ATCC 31012.  相似文献   

10.
Fatty acids derived from Micrococcus cerificans growing at the expense of odd- and even-carbon normal alkanes were studied. Results demonstrated that cultures grown with a variety of nonhydrocarbon substrates serving as sole carbon and energy source yielded only even-carbon fatty acids. Even-chain alkanes, dodecane through octadecane serving as sole carbon source, resulted in even-carbon fatty acids with direct correlation between carbon number of the major fatty acid species and carbon number of the alkane substrate. Odd-carbon alkanes, undecane through heptadecane serving as sole carbon source, yielded both odd- and even-carbon fatty acids. A transitional shift from even-carbon fatty acids to odd-carbon fatty acids was observed as the carbon number of the alkane substrate increased. Unsaturated fatty acids were found to comprise a significant percentage of all profiles. Analysis of unsaturated fatty acids showed all odd- and even-carbon acids analyzed were Delta(9) monounsaturated fatty acids.  相似文献   

11.
The major anthocyanin compound in buckwheat sprouts was determined to be cyanidin 3-O-rutinoside (C3R), based on HPLC data and MS/MS spectra. Investigation of the content of phenolic compounds in commercial buckwheat sprouts indicated that hypocotyls are abundant in C3R and rutin, whereas all of the detected flavonoids are abundant in cotyledons. The superoxide anion radical-scavenging activities (SOD-like activities) of phenolic compounds in buckwheat sprouts and their contents indicated that rutin, isoorientin, and orientin contributed mainly to the SOD-like activity of the extract from buckwheat sprouts. In contrast, the contribution of C3R was substantially lower than that of flavonoids.  相似文献   

12.
Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP) pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS) method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC) was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.  相似文献   

13.
Abstract

Enzymatic systems employed by microorganisms for oxidative transformation of various organic molecules include laccases, ligninases, tyrosinases, monooxygenases, and dioxygenases. Reactions performed by these enzymes play a significant role in maintaining the global carbon cycle through either transformation or complete mineralization of organic molecules. Additionally, oxidative enzymes are instrumental in modification or degradation of the ever-increasing man-made chemicals constantly released into our environment. Due to their inherent stereo- and regioselectivity and high efficiency, oxidative enzymes have attracted attention as potential biocatalysts for various biotechnological processes. Successful commercial application of these enzymes will be possible through employing new methodologies, such as use of organic solvents in the reaction mixtures, immobilization of either the intact microorganisms or isolated enzyme preparations on various supports, and genetic engineering technology.  相似文献   

14.
微生物砷氧化是指微生物通过砷氧化酶AioAB将毒性强的亚砷酸盐[As(Ⅲ)]氧化为毒性较弱的砷酸盐[As(Ⅴ)]的过程。该过程一方面有利于微生物自身和环境的修复,另一方面能够提供能量供给部分砷氧化菌生长。介绍微生物砷氧化调控机制的最新研究进展。  相似文献   

15.
The highest inhibition rate of conidial germination of Pyricularia oryzae was shown by extracts of rice plant leaves inoculated by a pathogen after treatment with probenazole, a rice blast controlling agent. Four anti-conidial germination substances were isolated from these extracts. Substances A, C and D inhibited the germination of the conidia at concentrations between 100 and 200 mcg/ml, and substance B caused morphological changes in the germination tubes of the conidia with a little inhibition of germination. These substances were differentiated from momilactone A, B and the degraded or metabolized products of probenazole. Besides anti-conidial germination activity, they showed antimicrobial activities against several kinds of phytopathogenic bacteria of fungi on agar plates by diffusion method.  相似文献   

16.
New Insights into Microbial Oxidation of Antimony and Arsenic   总被引:1,自引:0,他引:1       下载免费PDF全文
Sb(III) oxidation was documented in an Agrobacterium tumefaciens isolate that can also oxidize As(III). Equivalent Sb(III) oxidation rates were observed in the parental wild-type organism and in two well-characterized mutants that cannot oxidize As(III) for fundamentally different reasons. Therefore, despite the literature suggesting that Sb(III) and As(III) may be biochemical analogs, Sb(III) oxidation is catalyzed by a pathway different than that used for As(III). Sb(III) and As(III) oxidation was also observed for an eukaryotic acidothermophilic alga belonging to the order Cyanidiales, implying that the ability to oxidize metalloids may be phylogenetically widespread.  相似文献   

17.
18.
19.
A variety of bacteria, yeasts and fungi were screened for the preparation of enantiomers of chiral sulfoxides from aryl-aryl or alkyl-aryl (E) and (Z) vinyl sulfides 1. The asymmetric oxidation was studied on a model substrate, (E)-methyl-(2-phenyl)-vinylsulfide la. Along with various amounts of sulfone, all strains tested gave the corresponding sulfoxide, optically active, albeit with different chemical and optical yields. The stereochemical outcome of the reaction appears to be quite invariant and both enantiomers can be obtained. The high sensitivity towards substrate structure observed in a variety of sulfides is related to the toxicity of the substrates and the microbial oxidation is therefore assumed to be a detoxication reaction.  相似文献   

20.
Microbial oxidations of n-tetradecane, tetradecanols and tetradecanoic acid were investigated by using intact cells of Corynebacterium equi, a hydrocarbon-assimilating bacterium, in an aqueous phase and organic solvents. The bacterial cells were hydrophobic and could be well dispersed in all organic solvents employed to give homogeneous reaction mixtures, and among them, isooctane was found to be the best for the reaction. n-Tetradecane and tetradecanoic acid were completely oxidized in the aqueous phase, but not in isooctane. In contrast, 1-tetradecanol was oxidized much more readily in isooctane than in the aqueous phase, and an oxidation product identified as myristyl myristate was accumulated in isooctane at the conversion rate of 80%. 2-Tetradecanol was also readily oxidized in isooctane, and 2-tetradecanone was obtained at the conversion rate of nearly 100%. Similar results were obtained when toluene and n-hexane were used as the solvent in place of isooctane, while no reaction was observed when chloroform was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号