首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-6-phosphate dehydrogenase in a yeast, Hansenula mrakii IFO 0895 is induced when the cells are cultured in a medium containing lipid hydroperoxide. The enzyme was purified from H. mrakii to the homogeneous state on polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was estimated to be approximately 52kDa by SDS-PAGE and 130 kDa by Sephadex G-150column chromatography, respectively. The enzyme was specific to glucose-6-phosphate and NADP+, and Kmvalues for glucose-6-phosphate and NADP+ were 293µM and 24.1 µM, respectively. The enzyme activity was inhibited by diethylpyrocarbonate and 2, 4, 6-trinitrobenzene sulfonate, and by metal ions such as Zn2 +, Cd2 +, Cu2 +, and Al3 + . tert-Butyl hydroperoxide, a kind of lipid hydroperoxide, slightly(approximately 20%) increased the enzyme activity.  相似文献   

2.
Wild type cells of Hansenula mrakii IFO 0895 were highly resistant to the oxidative stress caused by lipid hydroperoxide. The resistance was due to a glutathione peroxidase (GSHPx) which was induced when the yeast was cultured in a medium containing lipid hydroperoxide (Inoue, Y. et al., Agric. Biol. Chem., 54, 3289–3293, 1990). In order to investigate the role of GSHPx, two mutants sensitive to lipid hydroperoxide were isolated. The phenotypes of the mutants were temperature-dependent; i.e., the mutants could grow at 28°C, but not at 35°C in the presence of lipid hydroperoxide. The mutants failed to induce the GSHPx at 35°C. However, the enzyme induced at 28°C and prepared from both mutants was stable after incubation at 37°C for 1 h.  相似文献   

3.
Glyoxalase I was purified from Hansenula mrakii IFO 0895 which was resistant to 25 mM methylglyoxal. The molecular weight of the purified enzyme was calculated to be 38,000 by both gel-filtration of Sephadex G-150 and SDS-PAGE. The enzyme was almost specific to methylglyoxal (Km = 0.91 mM). The activity of the enzyme was not inhibited by metal ion chelators such as EDTA, which is a potent inhibitor for glyoxalase Is from other sources.  相似文献   

4.
Methylglyoxal reductase was purified from Hansenula mrakii IFO 0895 to a homogenous state on polyacrylamide gel electrophoresis. The enzyme consisted of a single polypeptide chain with a molecular weight of 34,000. The enzyme was specific to methylglyoxal (Km = 1.92 mM) and NADPH (Km = 40.8 μM). The activity of the enzyme was inhibited by p-chloromercuribenzoate and HgCl2. NADP also inhibited the activity of the enzyme, and the Ki value was calculated to be 0.25 mM.  相似文献   

5.
Summary Glyoxalase I was extracted from Hansenula mrakii IFO 0895 by incubating the cells with buffer solution containing 50% acetone (enzyme activity 35 units/g cells) or 50% ethyl acetate (enzyme activity 28 units/g cells) at 30°C for 10 h. Glyoxalase II was also extracted from the cells, although the activity of the enzyme was lost during incubation with organic solvents, especially at higher temperature (30°C). By using the organic-solvent-extracted fraction of H. mrakii, enzymatic production of S-lactoylglutathione was studied, and approximately 82 mmol/l (30 g/l) of S-lactoylglutathione was produced from 120 mmol/l glutathione. Offprint requests to: A. Kimura  相似文献   

6.
Glyoxalase II [S-(2-hydroxyacyl)glutathione hydrolase], one of the components of the glyoxalase system, catalyzes the hydrolysis of S-lactoylglutathione to glutathione and d-lactic acid. The enzyme was partially purified from the yeast Hansenula mrakii IFO 0895 by successive column chromatographies and polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 22,000 daltons by gel-filtration of Sephadex G-150 column chromatography and 24,000 daltons by SDS-polyacrylamide gel electrophoresis. The enzyme was specific to S-lactoyglutathione and S-acetylglutathione. The activity of the enzyme was strongly inhibited by Cu2+, p-chloromercuribenzoate and HgCl2. The enzyme activity was also inhibited by hemimercaptal, a non-enzymatic condensation product between glutathione and methylglyoxal.  相似文献   

7.
Saccharomyces cerevisiae rhk mutants were previously shown to have a phenotype that is resistant to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. The RHK1/ALG3 gene encodes a mannosyltransferase that is involved in the synthesis of an oligosaccharide in protein N-glycosylation. Previously, this gene was cloned and shown to complement the rhk1 mutation. In this study, the RHK2 gene, which complements the rhk2 mutation, was cloned. The RHK2 gene was found to be identical to the essential gene STT3, which encodes a subunit of the oligosaccharyltransferase complex. This complex transfers the core oligosaccharide to proteins. The rhk2 mutants showed supersensitivity to several drugs (Calcofluor White, caffeine and FK506), suggesting that these strains have cell-wall defects. Activity staining of invertase in an acrylamide gel indicated that it was underglycosylated. These results suggest that one or more mannoproteins are involved in the cytocidal process of HM-1. Received: 13 July 1998 / Received last revision: 18 September 1998 / Accepted: 2 October 1998  相似文献   

8.
Coumarins comprise a group of natural phenolic compounds found in a variety of plant sources. Protective effects of coumarins against cytotoxicity induced by linoleic acid hydroperoxide were examined in cultured human umbilical vein endothelial cells. When the cells were incubated in medium supplemented with linoleic acid hydroperoxide and coumarins, esculetin (6,7-dihydroxycoumarin) and 4-methylesculetin protected cells from injury by linoleic acid hydroperoxide. Fraxetin and caffeic acid showed weak, but significant, protection. Esculin as well as esculetin and 4-methylesculetin were effective for protecting cells against linoleic acid hydroperoxide-induced cytotoxicity in the case of pretreatment for 24 h, however fraxetin and caffeic acid showed no protection. Since esculetin was detected after 24 h treatment with esculin, a sugar moiety in the esculin molecule appears to be hydrolyzed during pretreatment. Coumarins such as umbelliferone containing only one hydroxyl group showed no protective effect in pretreatment or concurrent treatment. Esculetin and 4-methylesculetin provided synergistic protection against cytotoxicity induced by linoleic acid hydroperoxide with alpha-tocopherol. Furthermore, the radical-scavenging ability of coumarins was examined in electron spin resonance spectrometry. Esucletin, 4-methylesculetin, fraxetin, and caffeic acid showed the quenching effect on the 1,1-diphenyl-2-picrylhydrazyl radical. These results indicate that the presence of an ortho catechol moiety in the coumarin molecules plays an important role in the protective activities against linoleic acid hydroperoixde-induced cytotoxicity.  相似文献   

9.
The region encompassing the α-galactosidase MELr gene was amplified from Zygosaccharomyces mrakii IFO 1835T by inverse-PCR and then sequenced. The nucleotide sequence of this region revealed a single open reading frame of 1410 bp encoding a 470 amino acid protein with a molecular weight of 51,909. The similarity of the deduced mature protein to other yeast α-galactosidases was 63.3% to Zygosaccharomyces cidri, 71.5% to Torulaspora delbrueckii, and 70.7–73.9% to Saccharomyces species. The nucleotide and amino acid sequences are deposited in the DDBJ/EMBL/GenBank database under Accession Number AB030209. Received: 10 February 2000 / Accepted: 29 March 2000  相似文献   

10.
Tsu-Tsuen Wang  Shang Fa Yang 《Planta》1987,170(2):190-196
In order to understand the physiological significance of the in-vitro lipoxygenase (EC 1.13.11.12)-mediated ethylene-forming system (J.F. Bousquet and K.V. Thimann 1984, Proc. Natl. Acad. Sci. USA 81, 1724–1727), its characteristics were compared to those of an in-vivo ethylene-forming system. While oat (Avena sativa L.) leaves, as other plant tissues, preferentially converted only one of the 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC) isomers to 1-butene, the lipoxygenase system converted all four AEC isomers to 1-butene with nearly equal efficiencies. While the in-vivo ethylene-forming system of oat leaves was saturable with ACC with a Km of 16 M, the lipoxygenase system was not saturated with ACC even at 10 mM. In contrast to the in-vivo results, only 10% of the ACC consumed in the lipoxygenase system was converted to ethylene, indicating that the reaction is not specific for ethylene formation. Increased ACC-dependent ethylene production in oat leaves following pretreatment with linoleic acid has been inferred as evidence of the involvement of lipoxygenase in ethylene production. We found that pretreating oat leaves with linoleic acid resulted in increased ACC uptake and thereby increased ethylene production. A similar effect was observed with oleic acid, which is not a substrate of lipoxygenase. Since linoleic acid hydroperoxide can substitute for lipoxygenase and linoleic acid in this system, it is assumed that the alkoxy radicals generated during the decomposion of linoleic acid hydroperoxide are responsible for the degradation of ACC to ethylene. Our results collectively indicate that the reported lipoxygenase system is not the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - Epps N-(2-hydroxyethyl)-piperazine-N-3-propanesulfonic acid - LH linoleic acid - LOOH linoleic acid hydroperoxide - pyridoxal-P pyridoxal-phosphate This work was presented at the 12th International Conference on Plant Growth Substances, Heidelberg, FRG, August 1985 (Abstract No. PO 5-52)  相似文献   

11.
To reveal clues to the function of human plasma glutathione peroxidase (GPx), we investigated its catalytic effectiveness with a variety of hydroperoxides. Comparisons of hydroperoxides as substrates for plasma GPx based on the ratio ofV max /K m were blocked by the limited solubility of the organic hydroperoxides, which prevented kinetic saturation of the enzyme at the chosen glutathione concentration. Therefore, we compared the hydroperoxides by the fold increase in the apparent first-order rate constants of their reactions with glutathione owing to catalysis by plasma GPx. The reductions of aromatic and small hydrophobic hydroperoxides (cumene hydroperoxide,t-amyl hydroperoxide,t-butyl hydroperoxide, paramenthane hydroperoxide) were better catalyzed by plasma GPx than were reductions of the more “physiological” substrates (linoleic acid hydroperoxide, hydrogen peroxide, peroxidized plasma lipids, and oxidized cholesterol).  相似文献   

12.
1. Etiolated seedlings of alfalfa and cucumber evolved n-hexanal from linoleic acid and cis-3-hexenal and trans-2-hexenal from linolenic acid when they were homogenized.

2. The activities for n-hexanal formation from linoleic acid, lipoxygenase and hydro-peroxide lyase were maximum in dry seeds and 1~2 day-old etiolated seedlings of alfalfa, and in 6~7 day-old etiolated seedlings of cucumber.

3. n-Hexanal was produced from linoleic acid and 13-hydroperoxylinoleic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. cis-3-Hexenal and trans-2-hexenal were produced from linolenic acid and 13-hydroperoxylinolenic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. But these extracts, particulariy cucumber one, showed a high isomerizing activity from cis-3-hexenal to trans-2-hexenal.

4. When the C8-aldehydes were produced from linoleic acid and linolenic acid by the crude extracts, formation of hydroperoxides of these C18-fatty acids was observed.

5. When 9-hydroperoxylinoleic acid was used as a substrate, trans-2-nonenal was produced by the cucumber homogenate but not by the alfalfa homogenate.

6. As the enzymes concerned with C6-aldehyde formation, lipoxygenase was partially purified from alfalfa and cucumber seedlings and hydroperoxide lyase, from cucumber seedlings. Lipoxygenase was found in a soluble fraction, but hydroperoxide lyase was in a membrane bound form. Alfalfa lipoxygenase catalyzed formation of 9- and 13-hydroperoxylinoleic acid (35: 65) from linoleic acid and cucumber one, mainly 13-hydroperoxylinoleic acid formation. Alfalfa hydroperoxide lyase catalyzed n-hexanal formation from 13-hydroperoxylinoleic acid, but cucumber one catalyzed formation of n-hexanal and trans-2-nonenal from 13- and 9-hydroperoxylinoleic acid, respectively.

7. From the above results, the biosynthetic pathway for C6-aldehyde formation in etiolated alfalfa and cucumber seedlings is established that C6-aldehydes (n-hexanal, cis-3-hexenal and trans-2-hexenal) are produced from linoleic acid and linolenic acid via their 13-hydroperoxides by lipoxygenase and hydroperoxide lyase.  相似文献   

13.
Peanut,Arachis hypogaea, plants were treated in the field with the bioregulator BAS 105 00W, 4-chloro-5-dimethylamino-2-phenylpyridazin-3-one, a substituted pyridazinone, at different times of development. The seeds were harvested, dried, hand-shelled, and analyzed for lipoxygenase activity and conjugated diene hydroperoxide content. Reduced lipoxygenase activity occurred when the bioregulator was applied to the plants at flowering and pegging. The conjugated diene hydroperoxide content decreased the most in peanuts when the bioregulator was applied at pegging. The apparent Km for lipoxygenase of treated peanuts with linoleic acid as substrate was the same as that for untreated peanuts.  相似文献   

14.
Poly(-glutamic acid) (PGA) production in Bacillus subtilis IFO3335 was studied. PGA was only slightly produced from medium (100 ml) containing 2 g citric acid and 0.5 g ammonium sulfate in B. subtilis IFO3335. When 0.01 g/100 ml l-glutamine was added to this medium, a large amount of PGA (0.45 g/100 ml), without any by-products such as polysaccharides, was produced. The changes in cell growth, and PGA, glutamic acid, citric acid and ammonium sulfate concentrations in this medium during cultivation were investigated. It was found that PGA was effectively produced for the short time of 20 h after an induction period and that glutamic acid was scarcely excreted during PGA production. PGA could be effectively produced using this medium containing l-glutamine, citric acid and ammonium sulfate. It is suggested that a small amount of l-glutamine added to the medium activated enzymes in the pathway of PGA synthesis in B. subtilis IFO3335. It can be presumed that the enzyme catalyzing the reaction from 2-oxoglutaric acid to l-glutamic acid was glutamate synthase in this bacterium.  相似文献   

15.
A lipid hydroperoxide-resistant mutant was isolated from a strain ofSaccharomyces cerevisiae. The mutant was resistant to 1.5mm tert-butylhydroperoxide and 1.0mm linoleic acid hydroperoxide. It flocculated in a Ca2+-dependent manner and the resistance against lipid hydroperoxide was suppressed by mannose, which also inhibited flocculation. A positive relationship between the acquirement of, the flocculent phenotype and resistance against lipid hydroperoxide is suggested. A protein with a molecular weight of 33 kDa was found on the surface of the mutant cell.  相似文献   

16.
The singlet oxygen trap diphenylfuran was rapidly oxidized to cis dibenzoylethylene during the decomposition of linoleic acid hydroperoxide catalyzed by ceric ions, methemoglobin or hematin. This conversion was enhanced in a deuterated medium and inhibited by other singlet oxygen quenchers or traps. The chemiluminescence accompanying the decomposition of the linoleic acid hydroperoxide was also markedly enhanced in a deuterated medium and inhibited by other singlet oxygen quenchers or traps. Antioxidants markedly inhibited these reactions. It is concluded that singlet oxygen is formed in substantial quantities during the metal catalyzed decomposition of linoleic acid hydroperoxide.  相似文献   

17.
Acid carboxypeptidase of Penicillium janthinellum IFO–8070 was produced effectively in submerged culture on a medium of 4 ~ 5% rice bran. The enzyme production was enlarged to volume cultivation of 150-liters in a 200-liters jar fermentor, and the yield of acid carboxypeptidase per milliliter filtrate reached to the maximum 3 days after inoculation.

Acid carboxypeptidase of low molecular weight (M.W. = 51,000) produced in the liquid culture broth was purified and crystallized in a large scale. Purification steps include Amberlite CG–50 treatment, ammonium sulfate precipitation, dialysis using “Diaflow,” activated charcoal treatment, and condensation using collodion-bag, or condensation and dialysis using “Diaflow.”

The crystals of the acid carboxypeptidase suspended in 50 mm acetate buffer (pH 3.7) were completely stable for six months at 5°C. On the other hand, at low enzyme concentration (0.01 U/ml) in 50 mm acetate buffer (pH 3.7), crystallized enzyme was somewhat labile, whereas, this inactivation was completely depressed by covering enzyme solution with toluene.  相似文献   

18.
An enzyme has been isolated from blue-green algae Oscillatoria sp. which utilizes the product, 13-hydroperoxy-9, 11-octadecadienoic acid (13-HPOD), of lipoxygenase for its substrate. This enzyme, termed hydroperoxide lyase, converts the conjugated diene 13-hydroperoxide of linoleic acid to 13-oxotrideca-9, 11-dienoic acid. The structure of the latter has been determined by ultraviolet spectroscopy and mass spectrometry. 9-HPOD is not a substrate for this enzyme. The hydroperoxide lyase from Oscillatoria sp. has a maximum of activity at pH 6.4 and 30°C. The molecular weight of the enzyme was estimated at 56,000. The enzyme was not inhibited by BW 755C, but was inhibited by molecules containing more than one hydroxyl group. Quercetin was found to be the best inhibitor of the enzyme activity. The purified hydroperoxide lyase from Oscillatoria sp. showed an apparent Km of 7.4 micromolar and a Vmax of 35 nanomoles per minute per milligram of protein for 13-HPOD. An enzymatic pathway for the biogenesis of oxodienoic acid from linoleic acid is proposed. This involves the sequential activity of lipoxygenase and hydroperoxide lyase enzymes.  相似文献   

19.
We isolated several thermotolerant Acetobacter species of which MSU10 strain, identified as Acetobacter pasteurianus, could grow well on agar plates at 41°C, tolerate to 1.5% acetic acid or 4% ethanol at 39°C, similarly seen with A. pasteurianus SKU1108 previously isolated. The MSU10 strain showed higher acetic acid productivity in a medium containing 6% ethanol at 37°C than SKU1108 while SKU1108 strain could accumulate more acetic acid in a medium supplemented with 4–5% ethanol at the same temperature. The fermentation ability at 37°C of these thermotolerant strains was superior to that of mesophilic A. pasteurianus IFO3191 strain having weak growth and very delayed acetic acid production at 37°C even at 4% ethanol. Alcohol dehydrogenases (ADHs) were purified from MSU10, SKU1108, and IFO3191 strains, and their properties were compared related to the thermotolerance. ADH of the thermotolerant strains had a little higher optimal temperature and heat stability than that of mesophilic IFO3191. More critically, ADHs from MSU10 and SKU1108 strains exhibited a higher resistance to ethanol and acetic acid than IFO3191 enzyme at elevated temperature. Furthermore, in this study, the ADH genes were cloned, and the amino acid sequences of ADH subunit I, subunit II, and subunit III were compared. The difference in the amino acid residues could be seen, seemingly related to the thermotolerance, between MSU10 or SKU1108 ADH and IFO 3191 ADH.  相似文献   

20.
A DNA fragment enhancing resistance against oxidative stress caused by several peroxides was cloned from the yeast Saccharomyces cerevisiae, and the corresponding gene was designated OSR; oxidative stress-resistant gene. By amplification of the OSR gene in the yeast cell, the transformant became resistant to tert-butyl hydroperoxide, linoleic acid hydroperoxide and hydrogen peroxide, whereas it became hypersensitive to cumene hydroperoxide. Thus, the dosage of the OSR gene in the yeast cell seemed to affect the behaviour of the transformant against peroxides. The resistance of the transformant was suppressed by the addition of buthionine sulfoximine, a potent inhibitor of glutathione biosynthesis, into a medium containing lipid hydroperoxide; thus a glutathione-dependent resistance mechanism was suggested to be concerned with the phenotype of the transformant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号