首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

The Actinomycete Actinosynnema pretiosum ssp. auranticum has commercial importance due to its production of ansamitocin P-3 (AP-3), a potent antitumor agent. One way to increase AP-3 production would be to constitutively express selected genes so as to relieve bottlenecks in the biosynthetic pathway; however, an integrative expression vector for A. pretiosum is lacking. The aim of this study was to construct a vector for heterologous gene expression in A. pretiosum.  相似文献   

2.
3.
【背景】安丝菌素是一类由珍贵束丝放线菌橙色亚种(Actinosynnema pretiosum ssp. auranticu)生产的美登素类衍生抗生素,属于大环内酰胺类物质,根据不同的C-3位基团可以分为一系列衍生物。目前已上市的高效抗癌药物曲妥珠单抗(T-DM1)以AP-3 (Ansamitocin P-3)为生产底物,并表现出很好的乳腺癌治疗效果。然而当前AP-3的产量较低,其过高的成本限制了进一步发展。【目的】应用适应性进化及添加适量甜菜碱策略提高安丝菌素AP-3的产量。【方法】以珍贵束丝放线菌橙色亚种为出发菌株,链霉素和巴龙霉素为胁迫压力进行适应性进化,筛选出安丝菌素积累较高的菌株,随后向进化菌株的发酵培养基中添加0.1%的甜菜碱,AP-3的产量进一步提高,同时分析了进化菌株AP-3相关基因的转录水平,初步探索进化菌株安丝菌素积累提高的原因。【结果】得到2株进化菌株Str16-4-4和Par16-2-1,发酵7d后AP-3产量分别提高了33.4%和31.7%,添加甜菜碱后其AP-3产量相比出发菌株提高了54.6%和47.4%。【结论】通过适应性进化的策略获得了AP-3生产能力提高的珍贵束丝放线菌橙色亚种进化菌株,对促进AP-3的生产提供了新思路,而且为适应性进化策略提高目标产物的产量提供了新的例证。  相似文献   

4.
Jia Y  Zhong JJ 《Bioresource technology》2011,102(21):10147-10150
The effect of divalent metal ions (i.e., Mn2+, Mg2+, Zn2+, Cu2+, and Co2+) on the production of anticancer ansamitocin P-3 (AP-3) by submerged cultures of Actinosynnemapretiosum in medium containing agro-industrial residues was investigated, and Mg2+ was found to be the most effective. Under the optimal condition of Mg2+ addition, the maximal AP-3 production titer reached 85 mg/L, which was 3.0-fold that of the control. The activities of methylmalonyl-CoA carboxyltransferase (MCT) and methylmalonyl-CoA mutase (MCM) were enhanced. The content of two precursors, malonyl-CoA and methylmalonyl-CoA, was lower than that of control. This work demonstrates that Mg2+ addition is a simple and effective strategy for increasing AP-3 production through the regulation of enzyme activity and pools of precursors. The information obtained can be helpful to its efficient production on large scale.  相似文献   

5.
6.
7.
Ansamitocins in combination with amphotericin B produced synergistic inhibition on the growth of several yeasts in liquid cultures, Ansamitocin P–3 at 5 µg/ml completely suppressed the growth of Saccharomyces cerevisiae whereas ansamitocin P–3 alone at 50 µg/ml hardly affected growth. Ansamitocin P–4 and maytansine also showed synergistic activity with amphotericin B against S. cerevisiae. The synergism also occurred in cultures of Candida albicans and Hansenula anomala. Combinations of ansamitocin P–3 with various agents revealed that the synergism depended on the specific property of amphotericin B. Ansamitocins showed no interfering activity against regeneration of protoplasts of S. cerevisiae. These results suggest that the limited activity of ansamitocins against these yeasts is due to the membrane permeability barrier of these cells.  相似文献   

8.
The aim of this review is to highlight updated results on the biologically active saponins from Leguminosae-Mimosoideae. Acacic acid-type saponins (AATS), is a class of very complex glycosides possessing a common aglycon unit of the oleanane-type (acacic acid = 3β, 16α, 21β trihydroxy-olean-12-en-28 oic acid), having various oligosaccharide moieties at C-3 and C-28 and an acyl group at C-21. About sixty molecules of this type have been actively explored in recent years from Leguminosae family, from a chemical point of view and some fifty were reported to possess cancer related activities. These include cytotoxic/antitumor, immunomodulatory, antimutagenic, and apoptosis inducing properties and appear to depend on the acylation and esterification by different moieties at C-21 and C-28 of the acacic acid-type aglycone. One can observe that the (6S) configuration of the outer monoterpenyl moiety (MT) seems more potent in mediating high cytotoxicity than its (6R) isomer. Furthermore, the trisaccharide moiety {β-d-Xylopyranosyl-(1→2)-β-d-Fucopyranosyl-(1→6)- N-Acetamido 2-β-d-Glucopyranosyl-} at C-3, the tetrasaccharide moiety {β-d-Glucopyranosyl-(1→3)-[α-L-Arabinofuranosyl-(1→4)]-α-l-Rhamnopyranosyl-(1→2)-β-d-Glucopyranosyl} at C-28 of the aglycone, and the inner MT hydroxylated at its C-9, having a (6S) configuration can be important substituent patterns for the induction of apoptosis of AATS. Because of their interesting cytotoxic/apoptosis inducing activity, some AATS can be useful in the search for new potential antitumor agents from Fabaceae. Furthermore, the sequence 28-O-{Glc-(1→3)-[Araf-(1→4)]-Rha-(1→2)-Glc-Acacic acid}, often encountered in the genera Acacia, Albizia, Archidendron, and Pithecellobium may represent a chemotaxonomic marker of the Mimosoideae subfamily.  相似文献   

9.
In shaken cultures ofPhanerochœte chrysosporium, different Tweens gave rise to similar and high lignin peroxidase (LiP) activities. The polyoxyethylene-sorbitan (POE-S) moieties isolated from Tweens gave rise to somewhat lower LiP activities, whereas fatty acids isolated from Tweens gave rise to much lower LiP activities than parent Tweens. LiP activity appeared 3 d after addition of Tween 80 if this was added within the first 4 d after inoculation. Of the three chemical moieties contained in Tweens,i.e., fatty acids, sorbitan, and polyoxyethylene (POE), only the latter one significantly stimulated the LiP activity of the culture. The stimulatory effect of POE on the LiP activity increased till its molar mass of approx. 1 kDa, then it levelled off. The quantity of POE in the culture decreased with time. Tween 80, its POE-S moiety and POEs seem to enhance LiP production and not only their release.  相似文献   

10.
K. D. Mukherjee 《Planta》1986,167(2):279-283
[1-14C]Oleic acid and [14-14C]erucic acid were converted to their acyl-CoA derivatives and incorporated into acyl lipids by a homogenate from developing mustard (Sinapis alba L.) seed and oil bodies, as well as supernatant isolated by centrifugation at 20000 g. In both homogenate and oil bodies, the oleoyl moieties from exogenous [1-14C]oleoyl-CoA were most extensively incorporated into phosphatidic acids, but very little into phosphatidylcholines. The pattern of labelling of acyl lipids by oleoyl versus erucoyl moieties from either of the corresponding fatty acids, added individually or as a mixed substrate, indicates that oleoyl-CoA directly acylates sn-glycerol-3-phosphate to yield lysophosphatidic acids and phosphatidic acids that are subsequently converted to mono- and diacylglycerols. In contrast, erucoyl-CoA predominantly acylates preformed mono-and diacylglycerols containing oleoyl moieties to yield triacylglycerols containing erucoyl moieties.  相似文献   

11.
Summary Rhizoxin and ansamitocin P-3 (a maytansinoid compound), potent inhibitors of mammalian brain tubulin assembly, inhibit growth of a variety of fungi including Aspergillus nidulans. Mutants of A. nidulans, benA10 which is a benomyl resistant -tubulin gene mutant and tubAl which is a benomyl supersensitive a-tubulin gene mutant, were both sensitive to rhizoxin and ansamitocin P-3 to the same extent as wild-type strains. We isolated 18 rhizoxin resistant mutants of A. nidulans. All of these mutants were cross-resistant to ansamitocin P-3, but not to benzimidazole antimitotic drugs. These mutants mapped to two loci, rhiA and rhiB, and all of those with high resistance mapped to rhiA. The fact that the protein extracts of rhiA mutants lost rhizoxin binding affinity and that rhiA was closely linked to benA, the major -tubulin gene in A. nidulans, indicated that rhiA must be a structural gene for -tubulin and that rhiA mutants are a new class of -tubulin gene mutants. All of this suggested that, in A. nidulans, these antimitotic drugs bind to -tubulin, and that rhizoxin and ansamitocin P-3 share the same binding site but the site does not overlap with the benzimidazole binding site. Protein extracts from a rhiB mutant retained rhizoxin binding affinity, therefore this rhizoxin resistance mechanism should not be a tubulin mediated process.  相似文献   

12.
A novel series of C-8 ester derivatives of leinamycin are described. Condensation of N-substituted amino acids or carboxylic acids containing polyether moiety with leinamycin resulted in the C-8 ester derivatives with good antitumor activity in several experimental models. Among these derivatives, compound 4e, which has five ethylene glycol ether units in the C-8 acyl group, showed potent antitumor activity against human tumor xenograft. Combination with the modification of the dithiolanone moiety was applied to these C-8 ester derivatives and some of them also showed good antitumor activity.  相似文献   

13.
Lycopersicon pennellii Corr. (D'Arcy) an insect-resistant, wild tomato possesses high densities of glandular trichomes which exude a mixture of 2,3,4-tri-O-acylated glucose esters that function as a physical impediment and feeding deterrent to small arthropod pests. The acyl moieties are branched C4 and C5 acids, and branched and straight chain C10, C11, and C12 acids. The structure of the branched acyl constituents suggests that the branched chain amino acid biosynthetic pathway participates in their biosynthesis. [14C]Valine and deuterated branched chain amino acids (and their oxo-acid derivatives) were incorporated into branched C4 and C5 acid groups of glucose esters by a process of transamination, oxidative decarboxylation and subsequent acylation. C4 and C5 branched acids were elongated by two carbon units to produce the branched C10-C12 groups. Norvaline, norleucine, allylglycine, and methionine also were processed into acyl moieties and secreted from the trichomes as glucose esters. Changes in the acyl composition of the glucose esters following sulfonylurea herbicide administration support the participation of acetohydroxyacid synthetase and the other enzymes of branched amino acid biosynthesis in the production of glucose esters.  相似文献   

14.
A thermally stable esterase (SNSM‐87) from Klebsiella oxytoca is explored as an enantioselective biocatalyst for the hydrolytic resolution of (R,S)‐2‐hydroxycarboxylic acid esters in biphasic media, where the best methyl esters possessing the highest enantioselectivity and reactivity are selected and elucidated in terms of the structure–enantioselectivity correlations and substrate partitioning in the aqueous phase. With (R,S)‐2‐chloromandelates as the model substrates, an expanded Michaelis–Menten mechanism for the rate‐limiting acylation step is adopted for the kinetic analysis. The Brønsted slope of 25.7 for the fast‐reacting (S)‐2‐chloromandelates containing a difficult leaving alcohol moiety, as well as that of 4.13 for the slow‐reacting (R)‐2‐chloromandelates in the whole range of leaving alcohol moieties, indicates that the breakdown of tetrahedral intermediates to acyl‐enzyme intermediates is rate‐limiting. However, the rate‐limiting step shifts to the formation of tetrahedral intermediates for the (S)‐2‐chloromandelates containing an easy leaving alcohol moiety, and leads to an optimal enantioselectivity for the methyl ester substrate. Biotechnol. Bioeng. 2007; 98: 30–38. © 2007 Wiley Periodicals, Inc.  相似文献   

15.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

16.
Chemical investigation of the glandular trichome exudate from Silene gallica L. (Caryophyllaceae) resulted in isolation of 10 cyclic fatty acyl glycosides (gallicasides A–J). The cyclic structures were characterized by a glycosidic linkage of the glucose moiety to either the C-12 or the C-13 position of the octadecanoyl moiety, and by an ester linkage between the C-2 hydroxy group of the glucose moiety and the carboxyl group of the oxygenated octadecanoic acid. The structures of the cyclic fatty acyl glycosides were further distinguished from one another by acetylation and/or malonylation on the glucose moiety. Of these compounds, the 1,2′-cyclic ester of 12(R)-(6-O-acetyl-3-O-malonyl-β-d-glucopyranosyloxy)octadecanoic acid (gallicaside J) was the most abundant (30.7%). These secondary metabolites were found specifically in the glandular trichome exudate rather than in other aerial parts.  相似文献   

17.
The fatty acid synthetase multienzyme from lactating rat mammary gland was modified either by removal of the two thioesterase I domains with trypsin or by inhibiting the thioesterase I activity with phenylmethanesulfonyl fluoride. The modified multienzymes are able to convert acetyl-CoA, malonyl-CoA, and NADPH to long chain acyl moieties (C16C22), which are covalently bound to the enzyme through thioester linkage, but they are unable to release the acyl groups as free fatty acids. A single enzyme-bound, long chain acyl thioester is formed by each molecule of modified multienzyme. Kinetic studies showed that the modified multienzymes rapidly elongate the acetyl primer moiety to a C16 thioester and that further elongation to C18, C20, and C22 is progressively slower. Thioesterase II, a mammary gland enzyme which is not part of the fatty acid synthetase multienzyme, can release the acyl moiety from its thioester linkage to either modified multienzyme. Kinetic data are consistent with the formation of an enzyme—substrate complex between thioesterase II and the acylated modified multienzymes. The present study demonstrates that the ability of thioesterase II to modify the product specificity of normal fatty acid synthetase is most likely attributable to the capacity of thioesterase II for hydrolysis of acyl moieties from thioester linkage to the multienzyme.  相似文献   

18.
Benzilic acid rearrangement of D-arabino-hexosulose (1) and O-β-D-glucopyranosyl-(1→4)-D-arabino-hexosulose (2) favours formation of mannonic acid and mannonic acid moieties, respectively. The results show that formation of aldonic acid end-groups via terminal aldosulose moieties is of little importance during oxygen-hydrogencarbonate treatment of (1→4)-linked polysaccharides. The major reaction of 1 in the absence of oxygen involves loss of C-1 as formic acid. The enediol intermediate gives rise to pentoses and pentuloses (degraded completely at high alkalinity), and 3-deoxypentonic acids. The yield of 3-deoxypentonic acids is decreased in the presence of oxygen, whereas that of arabinonic, erythronic, and glycolic acids is increased. The main reaction of 2 giving rise to aliphatic hydroxy acids is β-elimination of the glucose moiety, yielding a tricarbonyl intermediate (3) which, in sodium hydrogencarbonate, is decomposed mainly to 3,4-dihydroxybutanoic and glycolic acids. In sodium hydroxide, 3-deoxypentonic acids are among the major reaction products. In addition, a complex mixture of u.v.-absorbing solutes is formed, some of which are held irreversibly by anion exchangers.  相似文献   

19.
Four new caffeoyl -glucaric and -altraric acid derivatives along with eleven known compounds were isolated from aerial parts of Galinsonga parviflora. Their structures were elucidated by high-resolution spectroscopic studies. The four new compounds were determined as being 2,3,4,5-tetracaffeoylglucaric acid (1), 2,4,5-tricaffeoylglucaric acid (2), 2,3,4- or 3,4,5-tricaffeoylaltraric acid (3) and 2,3(4,5)-dicaffeoylaltraric acid (4). A reliable criterion for the determination of the linkage position of caffeic acids moieties in glucaric acid derivatives has been proposed, on the basis of detailed analysis of the respective J-couplings, including substitution and solvent influence on the observed values. All hexaric acids derivatives appeared as inhibitors of reactive oxygen species production by stimulated neutrophils.  相似文献   

20.
Cytotoxicity and inhibition on human DNA topoisomerase I (TOP1) and II (TOP2) of 74 plant-originated triterpenoids and triterpenoid glycosides were investigated. The cytotoxic compounds are primarily polyhydroxylated oleananes (GI50 of A549: 1.0–10.19 μM). Sixteen cytotoxic aesculiosides isolated from Aesculus pavia inhibited TOP1 catalytic activity by interacting directly with the free enzyme and preventing the formation of the DNA–TOP1 complex. Interestingly, hydrolysis of six active aesculiosides (1, 4, 6, 8, 10, and 23) lost their TOP1 activities but enhanced their cytotoxicities. None of the test compounds showed any activity against TOP2. Structure–activity relationship (SAR) investigations indicated that cytotoxic oleananes required at least one angeloyl moiety at either C-21 or C-22 but the sugar moiety at C-3 may decrease their cytotoxicities. An angeloyl or tigeloyl group at C-21 is required for oleananes to bind the free TOP1 enzyme although the type and length of acyl moiety at C-22 also affects their activity. However, sugar moiety at C-3 is necessary for their TOP1 activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号