首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel enzyme, which was named Nα-benzyloxycarbonyl amino acid urethane hydrolase, was purified from a cell-free extract of Streptococcus faecalis R ATCC 8043, using Nα-benzyloxycarbonyl glycine as substrate. The enzyme was purified 1300-fold with an activity yield of 8%. The purified enzyme was homogeneous by disc electrophoresis. The molecular weight of the native enzyme is about 220,000 by gel filtration, and a molecular weight of 32,000 was determined for the reduced and denatured enzyme by gel electrophoresis in sodium dodecyl sulfate. The isoelectric point was 4.48. The enzyme was inhibited by p-chloromercuribenzoate. The presence of divalent cations (i.e., Co2+ or Zn2+) is essential for its activity.  相似文献   

2.
Venom of Loxosceles reclusa free from impurities was expressed from venom glands collected by microdissection. Polyacrylamide gel electrophoresis of the venom at pH 8.3 demonstrated 7 or 8 major plus 3 or 4 minor components. Upon electrophoresis at pH 4.9 two major components plus 3 or 4 minor components were noted. Monophoretic hyaluronidase prepared by Sephadex gel filtration and electrophoresis at pH 8.3 exhibited optimum activity from pH 5.0 to 6.6. Sodium dodecyl sulfate gel electrophoresis of purified hyaluronidase revealed two components with estimated molecular weights of 33,000 and 63,000. The purified hyaluronidase exhibited activity against chondroitin sulfate, types A, B, and C at approximately 20–30% of that upon hyaluronic acid. The enzyme was inhibited 10–20% by the heavy metal ions, Fe+3 and Cu+2. Rabbit antivenom inhibited the spreading effect of whole venom in vivo and completely inhibited hyaluronidase in vitro.Incorporation of [14C]leucine into the spider venom led to the separation of hyaluronidase from the dermonecrotic activity of the venom.The venom demonstrated activity against carbobenzoxy-l-tyrosine-p-nitrophenyl ester and β-naphthylacetate which was inhibited approximately 65% by 2.5 × 10?3m levels of EDTA and EGTA but not by 2.5 × 10?4mo-phenanthroline. The esterase activity resisted concentrations of p-chloromercuribenzoate which totally inactivated papain. The venom appeared devoid of collagenase, dipeptidase, acetylcholinesterase, phosphodiesterase, ribonuclease A, and deoxyribonuclease.  相似文献   

3.
Use of cell electrophoresis combined with specific enzymes and varying ionic strength revealed a topological change of acidic sugars in lymphocyte membrane treated with a T-cell mitogen, phytohemagglutinin (PHA). The suggested alterations were an early translocation of hyaluronic acid to the cell periphery within 15 min of PHA addition and, 4 h later, the appearance of chondroitin sulphate in T-lymphocytes, but not in B-lymphocytes. As the contribution of chondroitin sulfate to the electrophoretic mobility increased with time up to 24 h, that of sialic acid decreased conversely. Several agents which block blast formation (2 mM ethylene glycol bis-β-aminoethylethyl-N,N,N′,N′-tetraacetic acid, 2 × 10−7 M ouabain, 0.1 μg/ml colchicine and 1 μg/ml cytochalasin B) also blocked the translocation of hyaluronic acid at the same concentrations. Chemical analysis of [14C]glycosaminoglycans by means of gel filtration followed by paper chromatography revealed a four-fold enhancement of the biosynthesis of chondroitin sulfate C after PHA stimulation. The presence of chondroitin sulfate in the cell periphery was also detected electrophoretically in T-cell type leukemia cells (MOLT-4B). These results suggest that the reorganization of glycosaminoglycans may be one of the membrane changes associated with blast formation of lymphocytes.  相似文献   

4.
A strain of Serratia marcescens that produced chondroitinase was isolated from soil. It produced a novel chondroitinase AC, which was purified to homogeneity. The enzyme was composed of two identical subunits of 35 kDa as revealed by SDS-PAGE and gel filtration. The isoelectric point for the chondroitinase AC was 7.19. Its optimal activity was at pH 7.5 and 40 °C. The purified enzyme was active on chondroitin sulfates A and C and hyaluronic acid, but was not with chondroitin sulfate B (dermatan sulfate), heparin or heparan sulfate. The apparent Km and Vmax of the chondroitinase AC for chondroitin sulfate A were 0.4 mg ml–1 and 85 mmol min–1 mg–1, respectively, and for chondroitin sulfate C, 0.5 mg ml–1 and 103 mmol min–1 mg–1, respectively.  相似文献   

5.
Activity of acid phosphatase secreted by mycelia ofPholiota nameko on cultivation for 30d in Pi-depleted medium was 88-fold higher than the corresponding activity in the Pi-supplied medium. One isozyme of the secreted acid phosphatases was purified from the culture filtrate of Pi-depleted medium by ammonium sulfate fractionation and cation exchange chromatography. The purified enzyme was homogeneous on electrophoresis. Gel filtration analysis showed change chromatography. The purified enzyme was homogeneous on electrophoresis. Gel filtration analysis showed that the native molecule had a molecular weight of 117,000. The molecular weight on gel electrophoresis with SDS was 52,000, indicating that the native form of the enzyme was a homodimer. The optimum pH and temperature of the enzyme were, 5.5 and 45°C, respectively, and the isoelectric point of the enzyme was pH 6.9. Adsorption on Con A-Sepharose and periodic-Schiff stain suggested that the enzyme is a glycoprotein. The enzyme hydrolyzed a wide variety of phosphate esters, nucleoside phosphates, sugar phosphates, and phosphorylated amino acids. Cu2+, Fe2+, Hg2+, iodoacetate, molybdate, tartaric acid, and SDS inhibited the enzyme activity. Fe3+ (1 mM), Triton X-100, methanol, and ethanol activated it. Fifteen residues of the N-terminal amino acid sequence were determined.  相似文献   

6.
An amylase which produces maltotriose from starch as the main product was found in the culture filtrate of a strain of Bacillus subtilis newly isolated from soil. The enzyme was purified to almost complete homogeneity, as judged by disc electrophoresis in polyacrylamide gel, by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex gel filtration.

The optimum pH and temperature of the enzyme were around 6~7 and 50°C, respectively. Metal ions such as Hg2+, Cu2+, Zn2+, Ni2+ and Fe2+ strongly inhibitied the enzyme activity. The molecular weight was found to be about 25,000 by gel filtration. The yields of maltotriose from short-chain amylose (DP 17), amylopectin, soluble starch and glycogen were about 69, 56, 56 and 40%, respectively.  相似文献   

7.
A morphologically detectable cell coat, composed of glycoprotein, glycolipid, and glycosaminoglycan, is present on the external surface of most vertebrate cells. We have invetigated the composition and organization of glycosaminoglycans in the cell coat of cultured human embryo fibroblasts by labeling cells with 3H-glucosamine and Na235SO4 and subsequently treating cultures with specific enzymes. Components released were identified by chromatography and specific enzymatic digestion. In situ incubation with leech hyaluronidase (4 μg/ml) removed only hyaluronic acid from the cell surface whereas testicular hyaluronidase (0.5 mg/ml) removed both hyaluronic acid and chondroitin sulfate. Trypsin (0.1 mg/ml) released a large mass of glycopeptides in addition to hyaluronic acid, chondroitin sulfate, and heparan sulfate. The affinity of the cell coat for the cationic dye, ruthenium red, was reduced by leech hyaluronidase treatment. Sequential enzyme digestions of the cell surface showed that hyaluronic acid could be removed without the concomitant or subsequent release of sulfated glycosaminoglycans, suggesting that the hyaluronic acid is not a structural backbone for glycosaminoglycan complexes of the external cell surface.  相似文献   

8.
Uterine slices obtained from the estrogen-treated rabbits were digested with pronase. Glycosaminoglycans and acidic glycopeptides were then isolated by Dowex 1 column chromatography and preparative electrophoresis on celulose acetate membrane (Separax), in succession.Each subfraction thus obtained was identified by the mobility on Separax electrophoresis and the digestibility with mucopolysaccharidases (Streptomyces hyaluronidase, testicular hyaluronidase, chondroitinase AC, chondroitinase ABC and heparinase). The resulting data showed that each complex saccharide (hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, sulfated glycopeptide and sialoglycopeptide) was separated into 2–5 fractions, indicating charge and/or molecular heterogeneity of each complex saccharide.  相似文献   

9.
Mutanases are enzymes that catalyze hydrolysis of α-1,3-glucosidic bonds in various α-glucans. One of such glucans, mutan, which is synthesized by cariogenic streptococci, is a major virulence factor for induction of dental caries. This means that mutan-degrading enzymes have potential in caries prophylaxis. In this study, we report the purification, characterization, and partial amino acid sequence of extracellular mutanase produced by the MP-1 strain of Paenibacillus curdlanolyticus, bacterium isolated from soil. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme showed a single protein band of molecular mass 134 kD, while native gel filtration chromatography confirmed that the enzyme was a monomer of 142 kD. Mutanase showed a pH optimum in the range from pH 5.5 to 6.5 and a temperature optimum around 40–45°C. It was thermostable up to 45°C, and retained 50% activity after 1 hr at 50°C. The enzyme was fully stable at a pH range of 4 to 10. The enzyme activity was stimulated by the addition of Tween 20, Tween 80, and Ca2+, but it was significantly inhibited by Hg2+, Ag+, and Fe2+, and also by p-chloromercuribenzoate, iodoacetamide, and ethylenediamine tetraacetic acid (EDTA). Mutanase preparation preferentially catalyzed the hydrolysis of various streptococcal mutans and fungal α-1,3-glucans. It also showed binding activity to insoluble α-1,3-glucans. The N-terminal amino acid sequence was NH2-Ala-Gly-Gly-Thr-Asn-Leu-Ala-Leu-Gly-Lys-Asn-Val-Thr-Ala-Ser-Gly-Gln. This sequence indicated an analogy of the enzyme to α-1,3-glucanases from other Paenibacillus and Bacillus species.  相似文献   

10.
An enzyme hydrolyzing nigeran (alternating α-l,3-and α-l,4-linked glucan) was purified from the culture filtrate of Streptomyces sp. J-13-3, which lysed the cell wall of Aspergillus niger, by precipitation with ammonium sulfate and column chromatographies on DEAE-Sephadex A-50, CM-Sephadex C-50, chromatofocusing, and Sephadex G-I00. The final preparation was homogenous in polyacrylamide gel electrophoresis (PAGE). The molecular weight of the enzyme was 68,000 by SDS–PAGE and gel filtration. The optimum pH and temperature for the enzyme activity were 6.0 and 50°C, respectively. The enzyme was stable in the pH range from 6.0 to 8.0 and up to 50°C. The enzyme activity was inhibited significantly by Hg+, Hg2+, and p-chloromercuribenzoic acid. The Km (mg/ml) for nigeran was 3.33. The enzyme specifically hydrolyzed nigeran into nigerose and nigeran tetrasaccharide by an endo-type of action, indicating it to be a mycodextranase (EC 3.2.1.61) that splits only the α-l,4-glucosidic linkages in nigeran.  相似文献   

11.
A phytase from Penicillium oxalicum PJ3, PhyA, was purified near to homogeneity with 427-fold increase in specific phytase activity by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatographies. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis of the purified enzyme indicated an estimated molecular mass of 65 kD. The optimal pH and temperature of the purified enzyme were pH 4.5 and 55°C, respectively. The enzyme activity was strongly inhibited by Ca2+, Cu2+, Zn2+, and phenylmethylsulfonyl fluoride (PMSF). The Km value for sodium phytate was 0.545 mM with a Vmax of 600 U/mg of protein. The phyA gene was cloned, and it contains an open reading frame of 1,383 with a single intron (118 bp), and encodes a protein of 461 amino acids.  相似文献   

12.
Extracts of cytoplasmic membranes ofStreptococcus sanguis 903 were analyzed for aminopeptidase activity by isoelectric focusing in polyacrylamide gel and enzyme staining with 16 different aminopeptidase substrates. A single aminopeptidase with specificity for aminoterminal arginine was detected. The enzyme was stimulated by dithiothreitol and-mercaptoethanol. Urea, sodium dodecyl sulfate (SDS), andp-chloromercuribenzoate were inhibitory. Metal ions had little or no effect on activity, except that Hg2+, Cu2+, and Ni2+ were inhibitory. The pH optimum for activity was at 7.2. The molecular mass estimated by SDS-polyacrylamide gel electrophoresis was 170 kDa.  相似文献   

13.
An isozyme of acid phosphatase-1, acid phosphatase-11, was purified from the leaves of tomato (Lycopersicon esculentum) to homogeneity and characterized. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis with or without sodium dodecyl sulfate. The gel filtration analysis showed that the native molecule had a relative molecular mass of about 61 kilodaltons (kDa). The relative molecular mass of the subunit on gel electrophoresis with sodium dodecyl sulfate was about 32 kDa, indicating that the native form of the enzyme was a homodimer. It was suggested by periodic acid-Schiff staining on the gel that the enzyme was a glycoprotein. The Km for p-nitrophenylphosphate was 2.9 × 10?3 m. The enzyme had a pH optimum of 4.5 in 0.15 m potassium acetate buffer with p-nitrophenylphosphate as a substrate. This enzyme was activated by divalent metal ions, such as Zn2+, Mg2+, and Mn2+. The N-terminal amino acids were sequenced after the purified enzyme was treated with pyroglutamylpeptidase. It was suggested that the N-terminal amino acid was pyroglutamate.  相似文献   

14.
A mucopolysaccharidase in the cell extract of an oral strain of Bacteroides sp. was purified to homogeneity by ammonium sulfate precipitation, DEAE-cellulose column chromatography, gel filtration on Sephadex G-200, and isoelectric focusing. Specific activity increased 110-fold and recovery was 2%. The molecular weight was determined to be 89,000 by gel filtration, and the isoelectric point was 7.0. The optimum pH for the activity was 6.5. The enzyme was inactivated by heating at 60 degrees C for 5 min. The purified mucopolysaccharidase degraded hyaluronic acid more rapidly than chondroitin and chondroitin sulfate A and C. However, it had no activity against chondroitin sulfate B, heparin, and heparan sulfate. Since unsaturated disaccharides were derived from the enzyme substrate, this enzyme was considered to be a mucopolysaccharide lyase.  相似文献   

15.
A mucopolysaccharidase in the cell extract of an oral strain of Bacteroides sp. was purified to homogeneity by ammonium sulfate precipitation, DEAE-cellulose column chromatography, gel filtration on Sephadex G-200, and isoelectric focusing. Specific activity increased 110-fold and recovery was 2%. The molecular weight was determined to be 89,000 by gel filtration, and the isoelectric point was 7.0. The optimum pH for the activity was 6.5. The enzyme was inactivated by heating at 60 degrees C for 5 min. The purified mucopolysaccharidase degraded hyaluronic acid more rapidly than chondroitin and chondroitin sulfate A and C. However, it had no activity against chondroitin sulfate B, heparin, and heparan sulfate. Since unsaturated disaccharides were derived from the enzyme substrate, this enzyme was considered to be a mucopolysaccharide lyase.  相似文献   

16.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

17.
Summary To test the value ofStreptomyces hyaluronidase in carbohydrate histochemistry, the effects of digestion with the enzyme on the staining of cartilage and non-cartilaginous tissues by Alcian Blue (AB) pH 1.0, AB pH 2.5, high iron diamine, low iron diamine, aldehyde fuchsin, dialysed iron-ferrocyanide and AB pH 2.5-periodic acid-Schiff were studied by light microscopy. The results obtained lead to the conclusion that theStreptomyces enzyme releases not only hyaluronic acid but also chondroitin sulphates and keratan sulphates in cartilage. Since hyaluronic acid is known to be linked to chondroitin sulphate proteoglycans, the enzyme is of limited value in localizing hyaluronic acid in cartilage. However, it is useful in localizing hyaluronic acid in most non-cartilaginous tissues.  相似文献   

18.
Water-soluble phospholipase B was purified to homogeneity from Torulaspora delbrueckii cell washings. The washings were concentrated by ultrafiltration, and then a fraction with phospholipase B activity was precipitated with ammonium sulfate, and purified by sequential column chromatographies on Octyl-Sepharose CL-4B, DEAE-Sephacel, and Sepharose 6B. The molecular weight of the enzyme was estimated to be 170,000~200,000 by SDS-polyacrylamide gel electrophoresis and by gel filtration with a Sephadex G-200 column. The isoelectric point of the enzyme was 4.0. The purified enzyme had two pH optima at pH 2.5 and pH 7.5. The activity at acidic pH was greatly stimulated by the divalent metal ions tested, but the activity at alkaline pH was stimulated mainly by Ca2+ and Fe2+. The purified enzyme had both lysophospholipase activity and phospholipase B activity in a ratio of 37:1 at acidic pH and 73:1 at alkaline pH. The amino acid composition of the enzyme was characterized by high contents of Asp, Ser, Leu, and Gly.  相似文献   

19.
Explanted definitive primitive streak to four somite chick embryos were labeled with [H3]glucosamine or S35O4 and the glycosaminoglycans were isolated and characterized. On the basis of susceptibility to Streptomyces hyaluronidase, which specifically degrades hyaluronic acid, hyaluronic acid is the major glycosaminoglycan produced by these embryos (at least 84%). On the basis of electrophoretic mobility, about 10% of the [H3]glucosamine-labeled glycoaminoglycan is sulfated. At least 55% of the sulfate-labeled glycosaminoglycan is sensitive to testicular hyaluronidase, and 36–39% is resistant to testicular hyaluronidase, but sensitive to nitrous acid treatment. About 94% of the labeled glycosaminoglycans can be accounted for in ratios of 22:1:5:1 as hyaluronic acid:chondroitin sulfate:heparan sulfate. No stage-related changes were observed. It is suggested that hyaluronic acid synthesis at this time might be related to the appearance of extensive cell-free spaces.  相似文献   

20.
An α-amylase which produces both maltotetraose and maltopentaose from starch as the main products was found in the culture filtrate of a strain of Bacillus circulans which was newly isolated from soil. The enzyme was purified to be almost homogeneous on disc electrophoresis in polyacrylamide gel by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex G-200 gel filtration.

The optimum pH and temperature of the enzyme were around pH 7.0 and around 50°C, respectively. Metal ions such as Hg2+, Cu2+, Ni2+, Zn2+, Fe2+ and Co2+ strongly inhibited the enzyme activity. The molecular weight was about 45,000. The yields of maltotetraose and maltopentaose from potato starch were 30 ~ 40% and 20 ~ 30%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号