首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myosin molecule was extracted from the smooth muscle parts of horse esophagus and purified by ammonium sulfate fractionation. The schlieren pattern of the sedimentation velocity run showed a very sharp single peak of.5.9. S (s20,w). Molecular weight of the protein was measured by means of the Archibald and sedimentation equilibrium methods, both in 0.5M KCI buffered by 1/150 M phosphate at pH 7.5 and at 5°C. The values obtained were 6.25 × 105 and 5.81 × 105respectively, for the two methods. The second virial coefficients were 1.1 × 104 and 1.2 × 10?4 ml/g. Denatured smooth muscle myosin was prepared in a solution of 5M guanidine HC1 containing 0.4 M KC1 and 0.2 M β-mercaptoet hanol buffered at pH 8.0. The weight-average molecular weight of the denatured smooth muscle myosin was 2.24 × 105 and the second virial coefficient was 7.6 × 10?4 ml/g. The values described above are in good agreement with those reported for rabbit skeletal myosin with ammonium sulfate fractionation. The molecular dimension of the molecule is estimated as the value for an axial ratio of 100, assuming a rigid rod molecular model for this molecule, both the thermodynamical and hydrodynamical treatment being in a good agreement with this estimation.  相似文献   

2.
Thermal denaturation of myosin rod has been studied by differential scanning microcalorimetry and intrinsic tryptophane fluorescence methods. Use of the sequence annealing in the calorimetric measurement allows to decompose the total thermogram of rod into four elementary bands with maxima at 42, 46.5, 50 and 57 degrees C. Fluorescence changes occur at temperatures which coincide with the first, second and fourth calorimetric peaks. Changes of the time resolved and steady state fluorescence of myosin rod were interpreted using the data on localization of tryptophan residues in the molecule. The tryptophan fluorescence of myosin rod is assumed to monitor the denaturational changes in high meromyosin and probably in the hinge region but not in the subfragment 2.  相似文献   

3.
The thermal unfolding of myosin rod, light meromyosin (LMM), and myosin subfragment 2 (S-2) was studied by differential scanning calorimetry (DSC) over the pH range of 6.5–9.0 in 0.5M KCl and either 0.20M sodium phosphate or 0.15M sodium pyrophosphate. Two rod samples were examined: one was purified by Sephadex G-200 without prior denaturation (native rod), and the other was purified by a cycle of denaturation-renaturation followed by Sephacryl S-200 chromatography (renatured rod). There were clearly distinguishable differences in the calorimetric behavior of these two samples. At pH 7.0 in phosphate the DSC curves of native rod were deconvoluted into six endothermic two-state transitions with melting temperatures in the range of 46–67°C and a total enthalpy of 4346 kJ/mol. Under identical conditions the melting profile of LMM was resolved into five endothermic peaks with transition temperatures in the range of 45–66°C, and the thermal profile of long S-2 was resolved into two endotherms, 46 and 57°C. Transition 4 observed with native rod was present in the deconvoluted DSC curve for long S-2, but absent in the DSC curve for LMM. This transition was identified with the high-temperature transition detected with long S-2 and attributed to the melting of the coiled-coil α-helical segment of subfragment 2 (short S-2). The low-temperature transition of long S-2 was attributed to the unfolding of the hinge region. The smallest transition temperatures observed for all three fragments were 45–46°C. It is suggested that the most unstable domain in rod (domain 1) responsible for the 46°C transition includes both the hinge region, which is the C-terminal segment of long S-2, and a short N-terminal segment of LMM. This domain, accounting for 21% of the rod structure, contains the S-2/LMM junction, and upon proteolytic cleavage yields the C-terminal and N-terminal ends of long S-2 and LMM, respectively. Over the pH range of 6.5–7.5, the observed specific heat of denaturation of rod was approximately equal to the sum of the specific heats of LMM and S-2. This finding provides an additional argument for the existence of independent domains in myosin rod.  相似文献   

4.
Thermally induced helix–coil transitions of myosin rod, light meromyosin, and tropomyosin were studied by optical rotatory dispersion (ORD). Fractional helicity was calculated from both the Moffitt-Yang parameter, b0, and the corrected mean residue rotation [m′] at 231.4 nm. Between 3 and 30°C, [m′] increases linearly with a slope of 59/°C, whereas b0 is virtually constant, indicating apparently different thermal melting behavior. Poly(L -lysine) and poly(L -glutamic acid) in their helical forms and myoglobin also show a nearly linear temperature dependence of [m′]231.4. Muscle proteins in 6M guanidine hydrochloride and the random-coil forms of the homopolymers exhibit temperature-dependent values of [m′]231.4 and b0. We conclude from these observations that ORD properties of both α-helices and random-coil polypeptides have significant intrinsic temperature dependencies. A new method of estimating fractional helicity as a function of temperature is proposed.  相似文献   

5.
The conformational transition of poly-L -tyrosine in 0.1M KCl was investigated by ORD and infrared spectroscopy, potentiometric titration, and sedimentation velocity experiments. It is shown that the fully ordered conformer is obtained by slow titration of the random coil with 0.1N HCl at 25°C. The charge-induced transition, at variance with other poly-α-amino acids, is completed in a narrow range of α. An aggregation process was detected both by potentiometric titration and sedimentation velocity. The polyamino acid aggregates around α = 0.7 at 25°C when the conformational transition is almost complete. Infrared spectra, in the region of the amide I band (1650 cm?1) showed that the transition is a random coil → antiparallel β one. Evidence exists that the form is of the intramolecular type. The foregoing interpretations of ORD and CD spectra in terms of the α-helix conformation are discussed.  相似文献   

6.
ORD,1 CD, and fluorescence spectra of arachin prepared by Tombs' (Biochem. J., 96, 119; 1965), Dawson's (Anal. Biochem., 41, 305; 1971) or Shetty and Rao's (Anal. Biochem., 62, 108; 1974) procedure were measured; the effect of denaturants such as SDS, GuHCl, and acid was also determined. ORD and CD spectra showed differences, whereas fluorescence spectra did not show any difference. The effect of the denaturants was the same on the three arachins. At low concentrations of GuHCl (<2 m), the denaturant was bound by the protein molecule without causing any conformational change. The binding affinity varied among the arachins.  相似文献   

7.
J Borejdo 《Biopolymers》1979,18(11):2807-2820
The rates of the translational motion of myosin fragments, heavy meromyosin (HMM), and heavy meromyosin subfragment-1 (HMM S-1) were measured during actin-activated ATPase reaction by the method of fluorescence correlation spectroscopy. This technique monitors the random fluctuations in the concentration of fluorescent molecules in an open volume which result from the translational diffusion of the molecular species under observation. The statistical behavior of the fluctuations is represented in the form of the autocorrelation function, which is related to the translational diffusion coefficient of the fluorescent molecules. The translational motion of fluorescently labeled myosin fragments was progressively slowed down after additions of increasing amounts of actin in the presence of excess MgATP. When these results are interpreted according to a simple binding scheme, the extent of the retardation can be used to obtain the apparent association constant for binding of S-1 and HMM to actin in the presence of MgATP. In 0.1M KCl and at 23°C, the apparent association constants were determined as KappHMM = 2.2 × 104M?1 and KappS-1 = 8.8 × 103 for HMM and S-1, respectively.  相似文献   

8.
The fluorescence lifetime of 1,N6-ethenoadenosine diphosphate (?-ADP) is 33 ns when bound to F-actin at 4 °C. When heavy meromyosin or myosin subfragment-1 binds to the F-actin filament, the lifetime of ?-ADP drops, reaching 29 ns when every actin monomer is bound to a myosin head. The change in lifetime is a consequence of cooperative conformational changes among the actin monomers. The results of these experiments support the contention that there are differences in the ways in which the two heads of the myosin molecule interact with the actin filament.  相似文献   

9.
The translational and rotational dynamics of tobacco mosaic virus in sodium phosphate buffer (pH =7.5) solutions has been investigated by polarized and depolarized light scattering Rayleigh linewidth studies. For concentrations ranging from 1.75 × 10?4 g ml?1 to 0.25 × 10?4 g ml?1 the translational diffusion coefficient (DT) has been found to be slightly concentration dependent and extrapolation to zero concentration gives D020°C = 0.34 ± 0.01 × 10?7 cm2S?1. A full analysis of the polarized spectra obtained at high and low scattering angles and the depolarized spectra at near zero scattering angles has enabled these techniques to be compared and the rotational diffusion constant DR to be determined. At a solution concentration of 1.75 × 10?4 g ml?1 a mean value is found to be DR20°C = 350 ± 30s?1. These values of DT and DR are in approximate agreement with calculations based on models of the tobacco mosaic virus molecule as a cylindrical rod.  相似文献   

10.
1. The Ca2+-activated adenosine triphosphatase of heavy meromyosin is maximally stimulated by lower relative molar concentrations of phenylmercuric acetate than are required with myosin. 2. Stimulation of the Ca2+-activated adenosine triphosphatase of both heavy meromyosin and myosin by thiol reagents is markedly affected by ionic strength, the effects being greater with the former than with the latter. In particular, N-ethylmaleimide strongly inhibits the Ca2+-activated adenosine triphosphatase of heavy meromyosin at ionic strength below about 0·2. 3. The precise behaviour of the thiol reagents at low ionic strength is slightly modified by the age of the heavy meromyosin and myosin preparations. 4. Stimulation of the Mg2+-activated adenosine triphosphatase of heavy meromyosin by thiol reagents is relatively insensitive to ionic strength. 5. The adenosine triphosphatases of heavy meromyosin and myosin activated by potassium chloride in the absence of bivalent activators are inhibited by thiol reagents over the range of ionic strength at which stimulation occurs in the presence of calcium chloride as activator. 6. The modifying effects of potassium chloride and sodium chloride are qualitatively different when heavy-meromyosin adenosine triphosphatase is stimulated with phenylmercuric acetate. No such difference is observed when the enzyme is stimulated with N-ethylmaleimide.  相似文献   

11.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

12.
Myosin and heavy meromyosin from ventricular, atrial, and skeletal muscle were purified and trinitrophenylated by 2,4,6-trinitrobenzene sulfonate. The trinitrophenylation reaction followed a complex kinetics consisting of a fast and slow reaction in all preparations studied. Reactive lysine residues were trinitrophenylated during the fast reaction with a concomitant decrease in K+ (EDTA)-activated ATPase and an increase in Mg2+-stimulated ATPase activities of myosin. The extent of increase in Mg2+-mediated ATPase was the highest with skeletal and the lowest with atrial myosin. The trinitrophenylation of the less reactive lysyl residues continued during the slow reaction. The rate constants of the reactions and the number of reactive lysine residues were evaluated by computer analyses of the trinitrophenylation curves. Two reactive lysine residues were found in skeletal and ventricular myosins while their number in atrial myosin was somewhat lower. The rate of trinitrophenylation in skeletal muscle myosin or heavy meromyosin was always higher than in the two cardiac myosin isozymes. Addition of KCl increased the trinitrophenylation of both highly reactive and slowly reactive lysyl residues in all of the three heavy meromyosins, however, the effect was more profound with cardiac heavy meromyosins. Addition of MgADP induced spectral changes in trinitrophenylated skeletal but not in cardiac myosins. Similar changes occurred in skeletal and to a lesser degree in ventricular heavy meromyosin, but no definite spectral changes were observed in atrial heavy meromyosin. The findings suggest that structural differences exist around the reactive lysyl residue in the head portion of the three myosins.  相似文献   

13.
To determine the localization of F-protein binding sites on myosin, the interaction of F-protein with myosin and its proteolytic fragments in 0.1 M KCl, 10 mM K-phosphate pH 6.5 was studied, using sedimentation, electron microscopic and optical diffraction methods. Sedimentation experiments showed that F-protein binds to myosin and myosin rod rather than to light meromyosin or S-1. The F-protein binding to myosin and rod is of a similar character. The calculated values of the constants of F-protein binding to myosin and rod are 2.6 X 10(5) M-1 and 2.1 X 10(5) M-1, respectively. The binding sites are probably located on the subfragment-2 portion of the myosin molecule. The number of F-protein binding sites on myosin calculated per chain weight of 80 000 is 5 +/- 1. The sedimentation results were confirmed by electron microscopic data. F-protein does not bind to light meromyosin paracrystals, but decorates myosin and rod filaments with the interval of 14.3 nm regardless of whether F-protein is added before or after filamentogenesis. A comparison of optical diffraction patterns obtained from myosin and rod filaments with those from decorated ones revealed a marked enhancement of meridional reflection at (14.3 nm)-1 in the latter case.  相似文献   

14.
Mutants in the unc-54 gene of Caenorhabditis elegans have been characterized by cyanylation and sodium dodecyl sulphate/polyacrylamide gel electrophoresis of the total myosin present in each mutant. In the recessive mutants lacking a major fraction of the total myosin, the high molecular weight doublet of 15 × 104 and 14 × 104 which dominates the cyanylation pattern of the total wild-type myosin is absent. In the mutant E675, which possesses a novel heavy-chain with a molecular weight of 2 × 105, each component of the cyanylation doublet is reduced by 104 daltons, indicating that the doublet is derived from partial cleavage of a single polypeptide chain. This suggests that unc-54 is the structural gene for a myosin heavy-chain present in a major fraction of the total nematode myosin.  相似文献   

15.
R. Lamed  Y. Levin  A. Oplatka 《BBA》1973,305(1):163-171
ATP was covalently bound to an agarose gel. The insolubilized ATP was found to be capable of specifically binding heavy meromyosin. The adsorbed heavy meromyosin could be eluted by ATP in solution. Both binding and elution by ATP of heavy meromyosin were not much effected by Ca2+, Mg2+ or EDTA.While the water-soluble polyalanine-myosin was also found to be adsorbed, myosin in 0.5 M KCl did not seem to be adsorbed by agarose-ATP.Both Mg2+ and Ca2+ appear to activate the splitting of bound ATP by heavy meromyosin to practically the same extent.We prepared water-soluble derivatives of ATP in which ATP underwent the same chemical modification required for its coupling to agarose but in which the agarose component was absent. Their splitting by heavy meromyosin was also activated by Mg2+ though to a lesser extent but actin did not influence this reaction.Possible relations between our findings and the various stages of the reaction between myosin and ATP, as well as the potential use of columns filled with insolubilized NTPs for the separation and purification of myosin and of its subfragments, are discussed.  相似文献   

16.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

17.
Tryptic (LMM Fr 1) and CNBr-treated (LMM-C) rod portion of myosin molecule were prepared from rabbit skeletal muscle myosin. An attempt was made to clarify the difference between LMM Fr 1 and LMM-C as measured by solubility and some physico-chemical techniques. The rigid structure of LMM Fr 1 melted into a random coil as temperature of the solution increased and the value of b0 and reduced viscosity did not show full recovery upon gradual cooling. The situation of LMM-C, on the other hand, showed the higher thermostability than LMM Fr 1. As stated in our previous paper,1) we have considered that the rod portion of myosin molecules is substantially thermostable.  相似文献   

18.
The substructure of the cardiac myosin molecule was examined by the limited proteolytic digestion of the parent molecule with (dialdehyde starch)-methylenedianiline-mercuripapain, S-MDA-mercuripapain, at low temperatures and neutral pH, using moderate enzyme to myosin rations. Pertinent properties of the insoluble enzyme complex were also examined. Kinetic, ultracentrifugal, and chromatographic observations of the fragmentation process revealed that a single type of lytic reaction occurs during the early stages, predominately releasing heavy meromyosin subfragment 1 (HMM-S1) and myosin rods. With further time digestion, the rods are additionally cleaved yielding light meromyosin and HMM-S2, and HMM-S1 is found to be partially degraded. The major proteolytic subfragments were isolated, purified, and characterized with respect to their enzymatic, optical, amino acid, and physicochemical properties. Only HMM-S1 exhibited Ca-2+-activated ATPase activity, and at a level three- to fourfold higher than that of native myosin. Moreover, its hydrohynamic properties suggest that it is globular in structure. On the other hand, light meromyosin-A (LMM-A) (which consists mainly of rods), and HMM-S2 appear to be highly asymmetric, rigid, alpha-helical molecules devoid of the amino acid proline. Strong similarities were evident in all aspects upon comparison of these results with documented information concerning the skeletal system. On the basis of the physical and chemical properties of the proteolytic subfragments relative to that of native myosin, it was further concluded that the cardiac myosin molecule is a double-stranded, alpha-helical rod ending in tow subfragment 1 globules, of which only one may be enzymatically active at a time.  相似文献   

19.
Light meromyosin, prepared by brief digestion of rabbit myosin, forms at low ionic strength tactoids with a 43 nm periodicity and open nets. These nets, when negatively stained, show strands intersecting at intervals of ~ 60 nm and at an angle of 120 ° to form hexagonal arrays (Huxley, 1963).By slow dialysis of light meromyosin from 0.35 to 0.1 m-KCl we have obtained large, highly ordered hexagonal nets, which we have subjected to structural analysis by electron microscopy of both negatively stained and sectioned material, and by X-ray diffraction. The net is a three-dimensional crystalline array whose overall shape is that of an oblate ellipsoid. Viewed down the short axis, a hexagonal appearance is seen. Analysis of other views of the net suggests that it has a simple layered structure, each layer consisting of a set of parallel strands of diameter about 10 nm. Each strand crosses over those in neighbouring layers at intervals of 64.4 nm and at an angle of 120 °, so that in the whole structure there is a 3-fold screw axis through each node of the net. A model for a strand is described in which light meromyosin molecules, ~ 100 nm in length, are arranged in an anti-parallel manner, each molecule having one end at a node of the lattice. If this end corresponds to the free end of the myosin tail, one of the interactions is similar to that found in type 1 segments of myosin rod (Harrison et al., 1971). The molecular packing within strands may be related to the packing of myosin tails in the bare zone of muscle thick filaments.  相似文献   

20.
A critical study of circular dichromism (CD) measurement at the wavelength region around 220 nm was made. Test sample methods gave deviations of abou 20%, at most, between instruments calibrated at 290 nm with D-10-camphorsulfonic acid. A calculation of the CD from optical rotatory dispersion (ORD) data was made for d-pantolactone which gave a CD maximum at 219 nm, [θ]21925 = ?17.3 × 103 in water. A proposal is made to use this value for calibration of CD in the 220-nm region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号